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Abstract The following system considered in this paper:

x′ =−e(t)x+ f (t)φp∗(y), y′ =−(p−1)g(t)φp(x)− (p−1)h(t)y,

wherep> 1, p∗ > 1 (1/p+1/p∗ = 1) andφq(z) = |z|q−2z for q= p or q= p∗. This system
is referred to as a half-linear system. The coefficientf (t) is assumed to be bounded, but
the coefficientse(t), g(t) and h(t) are not necessarily bounded. Sufficient conditions are
obtained for global asymptotic stability of the zero solution. Our results can be applied to
not only the case that the signs off (t) andg(t) change like the periodic function but also
the case thatf (t) andg(t) irregularly have zeros. Some suitable examples are included to
illustrate our results.
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1 Introduction

The purpose of this paper is to give sufficient conditions for the zero solution to non-
autonomous two dimensional systems of the form

x′ =−e(t)x+ f (t)φp∗(y),

y′ =−(p−1)g(t)φp(x)− (p−1)h(t)y
(1.1)
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to be globally asymptotically stable. Here, the prime denotesd/dt; the coefficientse(t),
f (t), g(t), andh(t) are continuous fort ≥ 0; the two numbersp and p∗ are positive and
satisfy

1
p
+

1
p∗

= 1;

the functionφq(z) is defined by

φq(z) = |z|q−2z, z∈ R

for q = p or q = p∗. Note thatp > 1 andp∗ > 1. If (x(t),y(t)) is a solution of (1.1), then
the function(cx(t),φp(c)y(t)) is also a solution of (1.1) for anyc∈ R. However, the sum of
two solutions of (1.1) is not always a solution of (1.1). In other words, the solution space of
(1.1) is homogeneous, but not additive.

We say that the zero solution of (1.1) isglobally attractiveif every solution(x(t),y(t))
of (1.1) tends to the origin(0,0) as timet increases. In addition, if the zero solution of (1.1)
is stable, then it is said to beglobally asymptotically stable. It is not too much to say that the
study of the global asymptotic stability of dynamical systems occupies an important position
in the qualitative theory of differential equations. There are a lot of applications concerning
the global asymptotic stability.

Throughout this paper, we assume that there exist positive numbersα, β andβ such
that

E(t)≥−α (A1)
and

β ≤ exp(pE(t))
f (t)
g(t)

≤ β (A2)

for t ≥ 0, whereE(t)
def
=
∫ t

0
e(s)ds. It is not necessarily assumed thatf (t) andg(t) are always

positive. Note thatf (t) andg(t) are allowed to become zero at the same time. For example,
if e(t) = 0, f (t) = sint and g(t) = sint + (sin3t)/2, then assumptions (A1) and (A2) are
satisfied withα = 1, β = 2/5 andβ = 2.

Consider the special case thate(t) = 0, f (t) = 1,

g(t) =
c(t)

(p−1)a(t)
and h(t) =

a′(t)+b(t)
(p−1)a(t)

,

wherea(t) is positive and differentiable for allt ≥ 0. Then, taking into account thaty =
φp(x′), we can rewrite system (1.1) as the second-order differential equation(

a(t)φp(x
′)
)′
+b(t)φp(x

′)+c(t)φp(x) = 0, (1.2)

which is a basic kinetic equation ifp= 2. The solution space of (1.2) is also homogeneous,
but not additive. For this reason, equation (1.2) is said to behalf-linear. Since the half-
linear differential equation (1.2) is a generalization of the second-order linear differential
equation with variable coefficients, many good articles are reported ceaselessly over the past
four decades. Those results can be found in the books [1, 14, 15] and the references cited
therein. However, strangely, the studies of half-linear differential equations (or systems)
are concentrating on oscillation theory. There are not so many researches on the global
asymptotic stability of the zero solution of half-linear differential systems. Especially, little
is known about the case that the coefficients change the sign like the periodic functions.
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Although such a case is significant on the applied aspect, it is hard to examine the asymptotic
behavior of solutions.

Very recently, the present authors [53] have discussed the stability problem for system
(1.1) in the special case thatf (t) andg(t) are the same periodic functions. By putting

ψ(t) = ph(t)− pe(t),

they reported the following result.

Theorem A Suppose that

(i) f (t) = g(t) ̸≡ 0 and f(t) is periodic;

(ii) E(t) and h(t) are bounded for t≥ 0;

(iii) ψ+(t) is weakly integrally positive for t≥ 0;

(iv)
∫ ∞

0
ψ−(t)dt < ∞,

where
ψ+(t) = max{0,ψ(t)} and ψ−(t) = max{0,−ψ(t)}.

Then the zero solution of(1.1) is globally asymptotically stable.

Note that the weak integral positivity ofψ+(t) is a stronger assumption than

lim
t→∞

∫ t
ψ+(s)ds= ∞

(for the definition of the weak integral positivity, see Sect. 3). It is clear that the above as-
sumptions (i) and (ii) imply assumptions (A1) and (A2). Sincef (t) is assumed to be periodic,
it is allowed to change the sign. Unfortunately, however, assumption (i) is too strong to be
applied to any practical case. For example, iff (t) = g(t) = t sint/(1+ t), then f (t) andg(t)
are asymptotically periodic functions, but are not periodic functions. Hence, Theorem A
cannot be applied. The following question then arises. In Theorem A, cannot we change
only assumption (i) into the assumption thatf (t) = g(t) ̸≡ 0 and f (t) is asymptotically
periodic? Of course, Theorem A is not useful even iff (t) andg(t) are different periodic
functions. It may be natural to consider whether or not assumption (i) can be weakened to
the assumption thatf (t) andg(t) are different periodic functions with the same period. But,
if e(t) = 0, f (t) = sint, g(t) = cost andh(t) = 1/(1+ t), then the zero solution of (1.1) is
not globally asymptotically stable though assumptions (ii)–(iv) hold. Here, other questions
are caused. What kind of condition onf (t) andg(t) will guarantee the global asymptotic
stability of the zero solution of (1.1) under the assumption thatf (t) andg(t) are different
periodic functions with the same period? To begin with, will some periodicity be necessary
for f (t) andg(t)? Is not the zero solution of (1.1) globally asymptotically stable whenf (t)
andg(t) irregularly have zeros?

We answer the above questions in this paper. For this purpose, we define a class of
bounded functions, which contains all nontrivial almost periodic functions and asymptoti-
cally almost periodic functions (for those definitions, see Sect. 2). To show that this class
of functions covers a wide range, we give easy examples in Sect. 2. The main result and its
corollary are stated in Sect. 3. A certain function composed by all the coefficients plays a
vital role in our results. We call this a characteristic function. To compare our theorems with
previous results on the asymptotic stability, we outline the evolution of Lyapunov’s direct
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method. In particular, we explain that our results are not settled by Barbašin and Krasovskiı̆’s
theorem and Matrosov’s theorem. We give the proof of the main result in Sect. 4. This sec-
tion is the core of the present paper. Our method is to examine the asymptotic behavior
of solutions of (1.1) by using a certain function described by coefficients and solutions in
addition to a Lyapunov function and the characteristic function. In Sect. 5, we improve the
boundedness ofh(t). We show that liminft→∞ |h(t)| has only to be finite. Through a simple
example, we mention that the zero solution of (1.1) is not necessarily globally asymptoti-
cally stable in the case that limt→∞ |h(t)|= ∞. Finally, in Sect. 6, we give some examples to
illustrate our results.

2 Property (P)

Before we go on to the main subject, let us define a family of bounded functions.

Definition 2.1. A nontrivial bounded functionχ(t) is said to haveproperty(P) if there exist
positive numbersδ , ω andd with ω > d, and a positive sequence{tm} with tm< ω −d such
that

χ(t)≥ δ if (m−1)ω + tm ≤ t ≤ (m−1)ω + tm+d (2.1)

or

χ(t)≤−δ if (m−1)ω + tm ≤ t ≤ (m−1)ω + tm+d (2.2)

for m∈ N sufficiently large.

It is clear that any nontrivial periodic function has property(P). For example, consider
the periodic functionχ(t) = sint. Then, it has property(P) with δ = 1/2, ω = π, d = 2π/3
andtm = π/6 for all m∈ N.

There are some definitions of almost periodic functions. The concept was first studied by
Harald Bohr. When we limit the domain of an almost periodic function from the whole real
line to the nonnegative real line, his definition becomes as follows: a continuous function
χ(t) is said to bealmost periodicif, for any ε > 0, there exists a positive numberl(ε) such
that any interval of lengthl(ε) contains at least one numberτ for which

|χ(t + τ)−χ(t)|< ε for t ≥ 0.

As to almost periodic functions, for example, see the books [7, 8, 10, 12, 13, 16, 20, 28, 39,
56].

Lemma 2.2 Any nontrivial almost periodic function has property(P).

Proof As is well known, any almost periodic functionχ(t) is bounded and uniformly con-
tinuous. Sinceχ(t) ̸≡ 0, there exists at∗ > 0 such thatχ(t∗) > 0 or χ(t∗) < 0. We may
assume thatχ(t∗) > 0, because the proof of the case thatχ(t∗) < 0 is essentially the same
as that of the case thatχ(t∗)> 0. Sinceχ(t) is continuous fort ≥ 0, there exist two numbers
a andb with 0< a< t∗ < b such that

χ(t)≥ 3
4

χ(t∗) for a≤ t ≤ b. (2.3)
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Sinceχ(t) is almost periodic, there exists al∗ = l(χ(t∗)/4) > 0 such that any interval of
lengthl∗ contains aτ for which

|χ(t + τ)−χ(t)|< 1
4

χ(t∗) for t ≥ 0.

We may assume without loss of generality thatl∗ > b.
Let δ = χ(t∗)/2, ω = 2l∗ andd = b−a. Then,ω > l∗ > b> b−a= d. Consider the

interval [(m−1)ω,(m−1)ω + l∗] for anym∈ N. Note that[(m−1)ω,(m−1)ω + l∗] and
[mω,mω + l∗] do not intersect each other. Since the length of[(m−1)ω,(m−1)ω + l∗] is
l∗, we can find aτm ∈ [(m−1)ω,(m−1)ω + l∗] such that

|χ(t + τm)−χ(t)|< 1
4

χ(t∗) for t ≥ 0.

Hence, together with (2.3), we obtain

1
4

χ(t∗)> |χ(t)−χ(t + τm)| ≥ χ(t)−χ(t + τm)≥
3
4

χ(t∗)−χ(t + τm)

for a≤ t ≤ b. By rewriting this, we get

χ(t)≥ 1
2

χ(t∗) = δ for a+ τm ≤ t ≤ b+ τm.

Let tm = a+ τm− (m− 1)ω for eachm∈ N. Then, sincel∗ > b and (m− 1)ω ≤ τm ≤
(m−1)ω + l∗, we see that 0< a≤ tm ≤ a+ l∗ < a+2l∗−b= ω −d and

χ(t)≥ δ for (m−1)ω + tm ≤ t ≤ (m−1)ω + tm+d.

We therefore conclude thatχ(t) has property(P). ⊓⊔

Following Fŕechet [17], a continuous functionχ(t) is said to beasymptotically almost
periodic if, it is a sum of an almost periodic functionp(t) and a functionq(t) which tends
to zero ast → ∞; that is,

χ(t) = p(t)+q(t) for t ≥ 0

(see also [10, 56]). We can also show that any nontrivial asymptotically almost periodic
function has property(P) (we omit the details).

Let us give some examples of the function which has property(P), except for periodic
functions, almost periodic functions and asymptotically almost periodic functions. For any
n∈ N, let an = n2+n−2. We divide the nonnegative real line[0,∞) into two sequences of
intervals

In =

[
πan

2
,

π(an+2)
2

]
and Jn =

[
π(an+2)

2
,

πan+1

2

]
.

Example 2.3Let χ(t) be a continuous differentiable function satisfying

χ(t) =



cost if t ∈ I4k−3

−cost if t ∈ I4k−2

−cost if t ∈ I4k−1

cost if t ∈ I4k
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with k∈ N andχ(t) = (−1)n for t ∈ Jn. Then,χ(t) has property(P).

The length ofIn is alwaysπ for any n ∈ N. Since the length ofJn is πn, it tends to∞
asn→ ∞. Hence,χ(t) given in Example 2.3 is neither an almost periodic function nor an
asymptotically almost periodic function.

Note thatan is even for anyn∈ N. Then, we can confirm thatχ(t) in Example 2.3 has
property(P) with δ = 1/2, ω = π, d = π/3 andtm = 0 for all m∈ N.

Here, we define two functions as follows:r(t) =
√

t sin
√

t and

s(t) =


t/4 if 0 ≤ t ≤ 2

1/2 if 2 ≤ t ≤ π2−2

−(t −π2)/4 if π2−2≤ t ≤ π2

with s(t +π2) = s(t) for t ≥ 0. Needless to say,s(t) is a nonnegative periodic function with
periodπ2, but r(t) is not even an (asymptotically) almost periodic function. It is clear that
s(t) has property(P) with δ = 1/2, ω = π2, d = π2−4 andtm = 2 for all m∈ N. Note that
r(t) vanishes att = 0 andt = π2n2. Taking into account thatr ′(π2n2) = (−1)n/2 and

lim
t→0

r ′(t) = 1,

we conclude thats(t)≤ |r(t)| for t ≥ 0. Hence,r(t) satisfies the inequality (2.1) or (2.2) with
δ = 1/2, ω = π2, d = π2−4 andtm = 2 for all m∈ N. By using the functionr(t), it is easy
to exhibit another example of property(P).

Example 2.4The function

χ(t) = max{min{r(t),1} ,−1}

has property(P).

3 Our main result and development of Lyapunov’s direct method

Here, we give the definition of the weak integral positivity that is assumed in Theorem A.
The weak integral positivity is an important concept even in the present paper.

Definition 3.1. A nonnegative functionϕ is said to beweakly integrally positiveif∫
I
ϕ(t)dt = ∞

for every setI =
∞∪

n=1

[τn,σn] such thatτn + δ < σn < τn+1 ≤ σn +∆ for someδ > 0 and

∆ > 0.

We can also find the concept in the paper [22, 24, 25, 31, 51, 52]. A typical example of
weakly integrally positive function is 1/(1+ t) or sin2 t/(1+ t) (for the proof, see Proposi-
tion 2.1 in [53]). Any nonnegative periodic function is also weakly integrally positive. Ifϕ
is weakly integrally positive, then it naturally follows that

lim
t→∞

∫ t
ϕ(s)ds= ∞.
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To state our main result, we assume thatf (t)/g(t) is differentiable fort ≥ 0 and define
the characteristic function

Ψ(t) = ph(t)− pe(t)+
f (t)
g(t)

(
g(t)
f (t)

)′
.

This assumption does not mean that bothf (t) andg(t) are differentiable fort ≥ 0. For the
sake of brevity, we write

Ψ+(t) = max{0,Ψ(t)} and Ψ−(t) = max{0,−Ψ(t)}.

In the case thatf (t) = g(t), thenΨ+(t) andΨ−(t) are the same asψ+(t) and ψ−(t) in
Theorem A, respectively.

Theorem 3.2 Let assumptions(A1) and (A2) hold and suppose that f(t)/g(t) is differen-
tiable for t≥ 0. Suppose also that

g(t)/exp((p−1)E(t)) has property(P); (3.1)

h(t) is bounded for t≥ 0; (3.2)

Ψ+(t) is weakly integrally positive; (3.3)∫ ∞

0
Ψ−(t)dt < ∞. (3.4)

Then the zero solution of(1.1) is globally asymptotically stable.

As known well, Lyapunov’s direct method is a tool which is effective to examine the
asymptotic behavior of solutions of differential systems. Although this method is conve-
nient to deal with stability problems roughly, it is not so easy to seek available Lyapunov
functions. For example, to show that the zero solution is globally asymptotically stable,
we need to find a Lyapunov function which is positive definite and radially unbounded and
whose total derivative along any solution is negative definite (for example, see [2, 6, 41–43]).
Unfortunately, however, it is very difficult to construct such a suitable Lyapunov function
for a concrete system. Even if we choose the total energy as a Lyapunov function, the deriva-
tive of the Lyapunov function is not always negative definite. Hence, such Lyapunov-type
theorems has a big weak point.

To overcome this weak point, a great deal of efforts has been made. The main attempt
was to weaken the negative definiteness of the total derivative. For example, Barbašin and
Krasovskĭı [6] have presented asymptotic stability criteria for autonomous systems un-
der the assumption that the total derivative of Lyapunov function is nonpositive and that
the set where the derivative is zero contains no complete trajectories except the origin.
Krasovskĭı [32] proved that these criteria can be applied even to periodic systems. However,
it is necessary to find a suitable periodic Lyapunov function. LaSalle [35] called the essence
of Barbǎsin and Krasovskiı̆’s argument ‘invariance principle’ and extended it to a particular
case of nonautonomous systems (see also [34, 36]). Note that Barbašin and Krasovskiı̆’s the-
orem cannot be extended to a general case of nonautonomous systems (refer to [44]). Much
ink has been spent on extensions of the Barbašin-Krasovskĭı-LaSalle method (for example,
see [4, 9, 18, 19, 23, 29, 30, 38, 55]).
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There is another direction to weaken the negative definiteness of the total derivative.
Matrosov [44] has dealt with the general nonautonomous system

x′ = F(t,x)

with F(t,x) being bounded with respect tot. Assuming the existence of a Lyapunov function
which is positive definite and decrescent whose total derivative is not greater than a nonpos-
itive and time-invarient function and using an additional auxiliary function, he proved that
the zero solution is uniformly asymptotically stable. Matrosov’s theorem was extended in
various directions by himself and many researchers (for example, see [3, 21, 22, 33, 37, 45,
47, 49, 50]).

About the above-mentioned stability theory via Lyapunov’s direct method, we can refer
to the book [48] greatly. In any case, it is assumed that the total derivative of Lyapunov
function is at least non-positive.

We cannot apply Barbašin and Krasovskiı̆’s theorem, because system (1.1) is neither au-
tonomous nor periodic. Let us examine whether Matrosov’s theorem is applicable to system
(1.1) or not. For this purpose, we adopt

V(t,x,y) = exp(pE(t))

(
|x|p+ f (t)

g(t)
|y|p∗

)

as a suitable Lyapunov function, which is regarded as a total energy for system (1.1). Then,
taking account of the relations

d
dz

|z|q = qφq(z) and zφq(z) = |z|q

for q= p or q= p∗, we get

V̇(1.1)(t,x,y) = pe(t)exp(pE(t))

(
|x|p+ f (t)

g(t)
|y|p∗

)
+exp(pE(t))

{
pφp(x)x

′+ p∗
f (t)
g(t)

φp∗(y)y
′+

(
f (t)
g(t)

)′
|y|p∗

}
= pe(t)exp(pE(t))

(
|x|p+ f (t)

g(t)
|y|p∗

)
+ p exp(pE(t))

(
−e(t)|x|p+ f (t)φp(x)φp∗(y)

)
+ p∗(p−1)exp(pE(t))

(
− f (t)φp(x)φp∗(y)−

f (t)h(t)
g(t)

yφp∗(y)

)
+exp(pE(t))

(
f (t)
g(t)

)′ |y|p∗

p∗
.

Sincep∗(p−1) = p and

−g(t)
f (t)

(
f (t)
g(t)

)′
=

f (t)
g(t)

(
g(t)
f (t)

)′
,
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we obtain

V̇(1.1)(t,x,y) = exp(pE(t))
f (t)
g(t)

|y|p∗
{

pe(t)− ph(t)+
g(t)
f (t)

(
f (t)
g(t)

)′}
=−exp(pE(t))

f (t)
g(t)

|y|p∗
{

ph(t)− pe(t)+
f (t)
g(t)

(
g(t)
f (t)

)′}
=−Ψ(t)exp(pE(t))

f (t)
g(t)

|y|p∗. (3.5)

We define another Lyapunov function

U(t,x,y) =V(t,x,y)exp

(
−
∫ t

0
Ψ−(s)ds

)
.

Then, (
e−pα |x|p+β |y|p∗

)
exp

(
−
∫ ∞

0
Ψ−(t)dt

)
≤V(t,x,y)exp

(
−
∫ ∞

0
Ψ−(t)dt

)
≤U(t,x,y),

whereα andβ are the numbers given in assumptions (A1) and (A2). Hence, we see that

(a) U(t,x,y) is positive definite and radially unbounded if and only if condition (3.4) is
satisfied.

Moreover, by (3.5),

U̇(1.1)(t,x,y) =
{
V̇(1.1)(t,x,y)−Ψ−(t)V(t,x,y)

}
exp

(
−
∫ t

0
Ψ−(s)ds

)
=−

{
Ψ−(t)|x|p+Ψ+(t)

f (t)
g(t)

|y|p∗
}

exp

(
pE(t)−

∫ t

0
Ψ−(s)ds

)
.

If condition (3.4) holds, thenΨ−(t) tends to zero ast → ∞. Hence,

(b) U̇(1.1)(t,x,y) is not negative definite but it less than or equal to zero.

If the characteristic functionΨ(t) is not less than a positive valuec for all t ≥ 0, then
Ψ−(t) ≡ 0 andΨ+(t) =Ψ(t) ≥ c for t ≥ 0. In this case, we might be able to prove that the
zero solution of (1.1) is only locally asymptotically stable by use of Matrosov’s theorem.
However, since

(c) U(t,x,y) is not decrescent;

(d) Ψ+(t) is allowed to tend to zero ast → ∞;

(e) e(t) andg(t) are not always assumed to be bounded (in addition, the boundedness of
h(t) is not assumed in Sect. 5),

it is hard to apply Matrosov’s theorem to the proof of Theorem 3.2, in particular, the global
attractivity of the zero solution of (1.1).

Before proving that the zero solution of (1.1) is globally attractive, we verify that the zero
solution of (1.1) is stable and all solutions of (1.1) are bounded. As mentioned above, if as-
sumptions (A1), (A2) and condition (3.4) are satisfied, then the Lyapunov functionU(t,x,y)
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is positive definite and radially unbounded and the total derivativeU̇(1.1)(t,x,y) along any
solution of (1.1) is nonpositive. Hence, by means of theorems due to Lyapunov [40] and
Yoshizawa [54], we conclude that the zero solution of (1.1) is stable and all solutions of
(1.1) are bounded, respectively (refer also to Theorem 4.2 in [48, p. 13] or to Theorem 8.7
in [56, pp. 67–68]). To sum up, we obtain the following result.

Proposition 3.3 Suppose that(A1) and(A2) hold. If (3.4) is satisfied, then the zero solution
of (1.1) is stable and all solutions of(1.1)are bounded.

If we assume that
|E(t)| ≤ α for t ≥ 0, (A3)

instead of (A1), then

β ≤ f (t)
g(t)

≤ β for t ≥ 0 (A4)

implies assumption (A2). It also follows from (A3) that

exp((p−1)E(t))≤ e(p−1)α for t ≥ 0.

We therefore conclude that
g(t) has property(P) (3.6)

implies condition (3.1). Hence, we have the following result.

Corollary 3.4 Let assumptions(A3) and (A4) hold and suppose that f(t)/g(t) is differ-
entiable for t≥ 0. If (3.2)–(3.4) and (3.6) are satisfied, then the zero solution of(1.1) is
globally asymptotically stable.

Note that assumptions (A3) and (A4) are stronger than assumptions (A1) and (A2). Using
Lyapunov-type theorems withU(t,x,y) above, we can easily prove that under the assump-
tions (A3) and (A4) with condition (3.4), the zero solution of (1.1) is uniformly stable and
all solutions of (1.1) are uniformly bounded. For the definitions of uniform stability and
uniform boundedness, see the books [48, 56].

4 Global attractivity

Let (x(t),y(t)) be a solution of (1.1) with the initial timet0 ≥ 0 and let

v(t) =V(t,x(t),y(t)),

whereV(t,x,y) is the Lyapunov function given in Sect. 3. Then, from the equality (3.5), it
follows that

v′(t) =
d
dt

V(t,x(t),y(t)) = V̇(1.1)(t,x,y)
∣∣∣
(x,y)=(x(t),y(t))

=−Ψ(t)exp(pE(t))
f (t)
g(t)

|y(t)|p∗ ≤Ψ−(t)v(t)

for t ≥ t0. SinceΨ−(t) satisfies condition (3.4), as in the proof of Lemma 5.2 in [53], we see
thatv′(t) is absolutely integrable, and therefore,v(t) has a limiting valuev0 ≥ 0.

We are now able to demonstrate our main result stated in the first half of Sect. 3.
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Proof of Theorem 3.2By virtue of Proposition 3.3, we conclude that the zero solution of
(1.1) is stable. Thus, we have only to prove that the zero solution of (1.1) is globally attrac-
tive; that is, every solution of (1.1) approaches the origin.

From assumptions (A1) and (A2) it turns out that

e−pα |x(t)|p+β |y(t)|p∗ ≤ v(t)

for t ≥ t0. Hence, if the limiting valuev0 of v(t) is zero, then bothx(t) andy(t) tend to
zero ast → ∞. This means that the solution(x(t),y(t)) approaches the origin(0,0) as time
t increases. This completes the proof. Hereafter, we consider only the case in whichv0 is
positive and we show that this case cannot happen.

For the sake of convenience, let

u(t) = exp(pE(t))
f (t)
g(t)

|y(t)|p∗.

Then, using (A2), again, we obtain

β |y(t)|p∗ ≤ u(t)≤ β |y(t)|p∗ (4.1)

for t ≥ t0. From Proposition 3.3, we see that(x(t),y(t)) is bounded fort ≥ t0. Hence, it
follows from (4.1) thatu(t) has an inferior limit and a superior limit. First, we shall show
that the inferior limit ofu(t) is zero, and we shall then show that the superior limit ofu(t) is
also zero.

Suppose that liminft→∞ u(t) > 0. Then, there exist aλ > 0 and aT1 ≥ t0 such that
u(t)> λ for t ≥ T1. Since

v′(t) =−Ψ(t)u(t) for t ≥ t0, (4.2)

it follows that∫ ∞

t0
|v′(t)|dt =

∫ ∞

t0
|Ψ(t)|u(t)dt ≥

∫ ∞

T1

Ψ+(t)u(t)dt > λ
∫ ∞

T1

Ψ+(t)dt.

Hence, from the fact thatv′(t) is absolutely integrable, it turns out that∫ ∞

T1

Ψ+(t)dt < ∞.

On the other hand, from (3.3), we see that∫ ∞

T1

Ψ+(t)dt = ∞.

This is a contradiction. We therefore conclude that liminft→∞ u(t) = 0.
Suppose that limsupt→∞ u(t)> 0. Letυ = limsupt→∞ u(t). From (A2), it follows that

exp(E(t))| f (t)| ≤ β |g(t)|
exp((p−1)E(t))

for t ≥ 0.

Sinceg(t)/exp((p−1)E(t)) has property(P), it is bounded fort ≥ 0. Hence, there exists a
γ > 0 satisfying

exp(E(t))| f (t)| ≤ γ for t ≥ 0. (4.3)
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It also follows from (3.2) that there exists ah> 0 with

|h(t)| ≤ h for t ≥ 0. (4.4)

Sincev(t) tends to a positive valuev0 ast → ∞, there existsT2 ≥ t0 such that

0<
1
p

v0 < v(t)<
2p−1

p
v0 for t ≥ T2. (4.5)

Note that 2p− 1 > 1. By (3.1), we can choose positive numbersδ , ω, d and a positive
sequence{tm} satisfying

|g(t)|
exp((p−1)E(t))

≥ δ for (m−1)ω + tm ≤ t ≤ (m−1)ω + tm+d.

Let ε be so small that

δ
(

v0− pε
p

)1/p∗

>

(
h+

2
(p−1)d

)(
ε
β

)1/p∗

. (4.6)

It is possible to find such a positive numberε, because the left-hand side approaches a
positive number but the right-hand side approaches zero asε → 0. We may assume without
loss of generality thatε < min

{
υ/2,v0/p

}
.

Since liminft→∞ u(t)= 0< υ = limsupt→∞ u(t), we can select three divergent sequences
τn, ρn andσn with T2 < τn < ρn < σn < τn+1 such thatu(τn) = u(σn) = ε, u(ρn)> 3υ/4,

u(t)≥ ε for τn < t < σn (4.7)

and

u(t)≤ ε for σn < t < τn+1. (4.8)

Sinceε <υ/2 andu(ρn)> 3υ/4, we also find two sequencestn andsn with τn < tn < sn < ρn

such thatu(tn) = υ/2, u(sn) = 3υ/4 and

1
2

υ < u(t)<
3
4

υ for tn < t < sn. (4.9)

Needless to say, the intervals[τn,σn] and [tn,sn] have the inclusion relation that[tn,sn] ⊂
[τn,σn]. Taking into account that

exp(pE(t))|x(t)|p = v(t)−u(t)

and using (4.5) and (4.8), we obtain

exp((p−1)E(t))|x(t)|p−1 >

(
v0− pε

p

)(p−1)/p

=

(
v0− pε

p

)1/p∗

> 0 (4.10)

for σn < t < τn+1. From (4.1) and (4.8), we see that

|y(t)| ≤

(
u(t)
β

)1/p∗

≤

(
ε
β

)1/p∗

for σn < t < τn+1. (4.11)

We shall show that the distance between intervals[τn,σn] and[τn+1,σn+1] does not un-
limitedly grow asn→ ∞.
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Claim. The sequences{τn} and{σn} satisfyτn+1−σn ≤ 2ω for n∈ N sufficiently large.

Suppose that there exists a sufficiently largen0 ∈N such thatτn0+1−σn0 > 2ω. We can
choose anm0 ∈ N such that(m0−2)ω < σn0 ≤ (m0−1)ω. Since

τn0+1 > σn0 +2ω > (m0−2)ω +2ω = m0ω,

we see that[(m0−1)ω,m0ω]⊂ [σn0,τn0+1]. Let us turn our attention to the interval

[(m0−1)ω,m0ω].

Note that|g(t)|/exp((p−1)E(t))≥ δ for (m0−1)ω+tm0 ≤ t ≤ (m0−1)ω+tm0+d. Hence,
from (4.4), (4.10) and (4.11) and the second equation of (1.1), we can estimate that

|y′(t)| ≥ (p−1)|g(t)||φp(x(t))|− (p−1)|h(t)||y(t)|
= (p−1)

{
|g(t)||x(t)|p−1−|h(t)||y(t)|

}
≥ (p−1)

δ exp((p−1)E(t))|x(t)|p−1−h

(
ε
β

)1/p∗


> (p−1)

δ
(

v0− pε
p

)1/p∗

−h

(
ε
β

)1/p∗


for (m0−1)ω + tm0 ≤ t ≤ (m0−1)ω + tm0 +d. From (4.6), we see that

|y′(t)|> 2
d

(
ε
β

)1/p∗

> 0

in this interval. Integrating this inequality, we obtain

|y((m0−1)ω + tm0 +d)|+ |y((m0−1)ω + tm0)| ≥

∣∣∣∣∣
∫ (m0−1)ω+tm0+d

(m0−1)ω+tm0

y′(t)dt

∣∣∣∣∣
=
∫ (m0−1)ω+tm0+d

(m0−1)ω+tm0

|y′(t)|dt

> 2

(
ε
β

)1/p∗

,

which contradicts (4.11). Thus, the claim is proved.

Let I =
∞∪

n=1

[τn,σn]. Then, it follows from (4.2) and (4.7) that

∫ ∞

t0
|v′(t)|dt =

∫ ∞

t0
|Ψ(t)|u(t)dt ≥

∫ ∞

t0
Ψ+(t)u(t)dt ≥ ε

∫
I
Ψ+(t)dt.

Sincev′(t) is absolutely integrable, it turns out that∫
I
Ψ+(t)dt < ∞. (4.12)



14 J. Sugie, S. Hata

Now, suppose that there exists aδ > 0 such thatσn− τn > δ for eachn∈ N. By the Claim,
there exists a∆ ≥ 2ω such thatτn+1−σn ≤ ∆ for anyn∈ N. Hence, by (3.3),∫

I
Ψ+(t)dt = ∞.

This contradicts (4.12). We therefore conclude that liminfn→∞(σn−τn) = 0. Since[tn,sn]⊂
[τn,σn], it follows that

liminf
n→∞

(sn− tn) = 0. (4.13)

By (4.5) and (4.9), we obtain

0≤ exp(pE(t))|x(t)|p = v(t)−u(t)<
2p−1

p
v0−

1
2

υ ,

namely,

exp((p−1)E(t))|x(t)|p−1 <

(
2p−1

p
v0−

1
2

υ
)1/p∗

for tn ≤ t ≤ sn. Hence, together with (4.2) and (4.3) and the relations

d
dz

|z|p = pφp(z) and zφp(z) = |z|p,

it turns out that

u′(t) = v′(t)−
(
exp(pE(t))|x(t)|p

)′
=−Ψ(t)u(t)− pexp(pE(t))

{
e(t)|x(t)|p+φp(x(t))x

′(t)
}

=−Ψ(t)u(t)− pexp(pE(t)) f (t)φp(x(t))φp∗(y(t))

≤−Ψ(t)u(t)+ pexp(E(t))| f (t)|exp((p−1)E(t))|x(t)|p−1|y(t)|p∗−1

≤−Ψ(t)u(t)+ pγ
(

2p−1
p

v0−
1
2

υ
)1/p∗

|y(t)|p∗−1

for tn ≤ t ≤ sn. Noticing thatΨ−(t)+Ψ(t) =Ψ+(t)≥ 0 for t ≥ t0, we get(
exp

(
−
∫ t

t0
Ψ−(s)ds

)
u(t)

)′
= exp

(
−
∫ t

t0
Ψ−(s)ds

){
−Ψ−(t)u(t)+u′(t)

}
≤ exp

(
−
∫ t

t0
Ψ−(s)ds

){
−Ψ−(t)u(t)−Ψ(t)u(t)

+ pγ
(

2p−1
p

v0−
1
2

υ
)1/p∗

|y(t)|p∗−1
}

≤ pγ
(

2p−1
p

v0−
1
2

υ
)1/p∗

|y(t)|p∗−1

for tn ≤ t ≤ sn. Since(x(t),y(t)) is bounded fort ≥ t0, there exists aµ > 0 such that(
exp

(
−
∫ t

t0
Ψ−(s)ds

)
u(t)

)′
< µ for tn ≤ t ≤ sn.
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Integrate this inequality fromtn to sn to obtain

exp

(
−
∫ sn

t0
Ψ−(t)dt

)
u(sn)−exp

(
−
∫ tn

t0
Ψ−(t)dt

)
u(tn)≤ µ(sn− tn).

Hence,

exp

(
−
∫ ∞

tn
Ψ−(t)dt

)
u(sn)−u(tn)≤ exp

(
−
∫ sn

tn
Ψ−(t)dt

)
u(sn)−u(tn)

≤ µ exp

(∫ tn

0
Ψ−(t)dt

)
(sn− tn)

≤ µ exp

(∫ ∞

0
Ψ−(t)dt

)
(sn− tn).

Recall thattn → ∞, u(tn) = υ/2 andu(sn) = 3υ/4. From (3.4), it follows that

exp

(
−
∫ ∞

tn
Ψ−(t)dt

)
u(sn)−u(tn)→

υ
4

as n→ ∞.

On the other hand, by (3.4) and (4.13),

µ exp

(∫ ∞

0
Ψ−(t)dt

)
(sn− tn)→ 0 as n→ ∞.

This is a contradiction. Consequently, limsupt→∞ u(t) = υ = 0.
As proved above,u(t) tends to zero ast → ∞. Hence, there exists aT3 ≥ t0 such that

u(t)< ε for t ≥ T3, (4.14)

whereε is a positive number given in (4.6). Letm1 be an integer satisfying

(m1−1)ω > T3.

Using (4.14) instead of (4.8) and following the same process as in the proof of the Claim,
we can estimate that

2

(
ε
β

)1/p∗

≥ |y((m1−1)ω + tm1 +d)|+ |y((m1−1)ω + tm1)| ≥

∣∣∣∣∣
∫ (m1−1)ω+tm1+d

(m1−1)ω+tm1

y′(t)dt

∣∣∣∣∣ .
Since

|y′(t)|> 2
d

(
ε
β

)1/p∗

> 0

for (m1−1)ω + tm1 ≤ t ≤ (m1−1)ω + tm1 +d, it follows that

2

(
ε
β

)1/p∗

≥

∣∣∣∣∣
∫ (m1−1)ω+tm1+d

(m1−1)ω+tm1

y′(t)dt

∣∣∣∣∣=
∫ (m1−1)ω+tm1+d

(m1−1)ω+tm1

|y′(t)|dt > 2

(
ε
β

)1/p∗

.

This is a contradiction. Thus, the case ofv0 > 0 does not occur.
The proof of Theorem 3.2 is thus complete. 2
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5 Generalization

In Theorem 3.2, the coefficienth(t) is assumed to be bounded for allt ≥ 0. We can somewhat
weaken this assumption. In fact, if there exists ah> 0 such that

|h(t)| ≤ h for (m−1)ω + tm ≤ t ≤ (m−1)ω + tm+d, (5.1)

then we can proceed with the same argument as in the proof of Theorem 3.2. We only have to
use assumption (5.1) instead of inequality (4.4) (we entrust the detailed proof to the reader).
Hence, we have the following generalization of Theorem 3.2.

Theorem 5.1 Let assumptions(A1) and (A2) hold and suppose that f(t)/g(t) is differen-
tiable for t≥ 0. If conditions(3.1), (3.3), (3.4)and(5.1)are satisfied, then the zero solution
of (1.1) is globally asymptotically stable.

Condition (5.1) implies that liminft→∞ |h(t)|< ∞. Of course, it is permitted that

limsup
t→∞

|h(t)|= ∞.

However, under the assumptions (A1) and (A2) and conditions (3.1), (3.3) and (3.4), if

lim
t→∞

|h(t)|= ∞,

then the zero solution of (1.1) is not always globally asymptotically stable.
To see this fact, the following equation is often cited:

x′′+(2+et)x′+x= 0.

For example, see the paper [5, 26] and the books [20, p. 326] and [48, pp. 39–41]. This
equation can be transformed into the system

x′ = y,

y′ =−x− (2+et)y,

which has a nontrivial solution(x(t),y(t)) = (c(1+e−t),−ce−t) for each constantc ̸= 0.
Note that the solution(x(t),y(t)) approaches a point other than the origin. This phenomenon
is called ‘overdamping’. The phenomenon of overdamping is caused because of a rapid
increase of the damping coefficient.

To decide the limit of the damping coefficient in which this phenomenon is not caused,
Hatvaniet al. [27] have considered the damped linear oscillator

x′′+h(t)x′+k2x= 0,

wherek is a positive constant. They presented a necessary and sufficient condition for the
equilibrium to be (globally) asymptotically stable. This is a so-called growth condition on
h(t) and it can be checked with comparative ease (see also [26]).

In the next section, we will confirm that the phenomenon of overdamping occurs even
by the half-linear differential system (1.1).
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6 Examples

To illustrate our theorems, we give some examples. As mentioned in Sect. 3, it is easy to
deal with the case thatΨ(t) is not less than a positive valuec for all t ≥ 0. For this reason,
we cite other cases. In the first example,Ψ(t) is allowed to be zero at a time sequence{tn},
but it is positive otherwise.

Example 6.1Consider system (1.1) with

e(t) =
1

1+ t
, f (t) =

sint
1+ t

, g(t) = (1+ t)p−1
(

sint +
1
2

sin3t

)
and h(t) =

4
√

5
5p

,

wherep> 1. Then the zero solution is globally asymptotically stable.

SinceE(t) = log(1+ t) and

exp(pE(t))
f (t)
g(t)

= eplog(1+t) sint
(1+ t)p(sint +sin3t/2)

=
sint

sint +(3sint −4sin3 t)/2
=

2

5−4sin2 t

for t ≥ 0, assumption (A1) is satisfied withα = 1 and assumption (A2) is satisfied with
β = 2/5 andβ = 2, respectively. Condition (3.1) is also satisfied, because

g(t)
exp((p−1)E(t))

=
5
2

sint −2sin3 t

which is a periodic function with period 2π. To be precise,g(t)/exp((p−1)E(t)) has prop-
erty (P) with δ = 1/2, ω = 2π, d = 5π/6 andtm = π/12 for all m∈ N. It is clear that
condition (3.2) holds. To confirm conditions (3.3) and (3.4), we examine the increase and
decrease of the periodic functionk(t) = sin2t/(5−4sin2 t). The period ofk(t) is π and

k′(t) =
1

(5−4sin2 t)2

{
2cos2t (5−4sin2 t)+8sin2t sint cost

}
=

2

(5−4sin2 t)2

{
(2cos2 t −1)(1+4cos2 t)+8(1−cos2 t)cos2 t

}
=

2(6cos2 t −1)

(5−4sin2 t)2

for t ≥ 0. Hence,k(t) is increasing fort ∈ [0, t∗]∪ [π − t∗,π] and it is decreasing fort ∈
[t∗,π − t∗], wheret∗ = arccos1/

√
6, and therefore,k(t) has the maximum value 1/

√
5 at

t = π(n−1)+ t∗ and the minimum value−1/
√

5 att = πn− t∗ with n∈ N. We obtain

Ψ(t) = ph(t)− pe(t)+
f (t)
g(t)

(
g(t)
f (t)

)′

=
4
√

5
5

− p
1+ t

+
p(1+ t)p−1(5−4sin2 t)−8(1+ t)p sint cost

(1+ t)p(5−4sin2 t)

=
4
√

5
5

− p
1+ t

+
p

1+ t
− 4sin2t

5−4sin2 t
=

4
√

5
5

−4k(t),
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which is nonnegative and periodic. Hence, it turns out thatΨ+(t) =Ψ(t) andΨ−(t)≡ 0, and
conditions (3.3) and (3.4) hold. Thus, by means of Theorem 3.2, we conclude that the zero
solution is globally asymptotically stable.

In Example 6.1, since the characteristic functionΨ(t) is a nonnegative periodic func-
tion with periodπ, it fails to have a limit. In the next example, we consider the case that
limt→∞Ψ(t) = 0. This case is harder to deal with.

Example 6.2Consider system (1.1) with

e(t) = sint, f (t) =
1+ t
2+ t

sint, g(t) =
2+ t
1+ t

sint and h(t) =
1

1+ t
+sint.

Then the zero solution is globally asymptotically stable.

SinceE(t) = 1−cost, assumption (A3) is satisfied withα = 2. Assumption (A4) is also
satisfied withβ = 1/4 andβ = 1, because

f (t)
g(t)

=

(
1− 1

2+ t

)2

↗ 1 as t → ∞.

Note thatg(t) is asymptotically periodic and|g(t)| ≥ |sint| for t ≥ 0. Hence,g(t) has prop-
erty (P) with δ = 1/2, ω = 2π, d = 2π/3 andtm = π/6 for all m∈ N; that is, condition
(3.6) is satisfied. It is obvious that condition (3.2) holds. Since

Ψ(t) = ph(t)− pe(t)+
f (t)
g(t)

(
g(t)
f (t)

)′

=
p

1+ t
− 2

(1+ t)(2+ t)

=
1

1+ t

(
p− 2

2+ t

)
≥ p−1

1+ t

for t ≥ 0, it follows thatΨ+(t) =Ψ(t)≥ (p−1)/(1+ t) andΨ−(t)≡ 0. Hence, conditions
(3.3) and (3.4) are satisfied. Thus, by virtue of Corollary 3.4, we conclude that the zero
solution is globally asymptotically stable.

In Examples 6.1 and 6.2, the coefficienth(t) is bounded for allt ≥ 0. We next consider
the case thath(t) is unbounded.

Example 6.3Consider system (1.1) with

e(t) =− 1
(1+ t)2 , f (t) = g(t) = sint and h(t) =

1
1+ t

+ t (|sint|−sint).

Then the zero solution is globally asymptotically stable.

It is clear that assumption (A3) is satisfied withα = 1 and assumption (A4) is satisfied
with β = β = 1. It is also clear thatg(t) has property(P) with δ = 1/2, ω = 2π, d = 2π/3
andtm = π/6 for all m∈ N; that is, condition (3.6) is satisfied. Recall that assumption (A3)
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implies assumption (A1); under the assumption (A3), assumption (A4) implies assumption
(A2) and condition (3.6) implies condition (3.1). Moreover, we obtain

Ψ(t) = ph(t)− pe(t)+
f (t)
g(t)

(
g(t)
f (t)

)′

=
p

1+ t
+

p
(1+ t)2 + pt (|sint|−sint)≥ p

1+ t

for t ≥ 0. Hence, it turns out that conditions (3.3) and (3.4) hold. Note that

|h(t)| ≤ 1
1+ t

≤ 1 for 2π(m−1)≤ t ≤ π(2m−1).

Since

(m−1)ω + tm = 2π(m−1)+
1
6

π ≥ 2π(m−1)
and

(m−1)ω + tm+d = 2π(m−1)+
5
6

π ≤ π(2m−1),

condition (5.1) is satisfied withh= 1. Thus, all of the assumptions in Theorem 5.1 can be
confirmed, and therefore, the zero solution is globally asymptotically stable.

Although the coefficiente(t) is bounded in Examples 6.1–6.3, the boundedness ofe(t)
is not essential for global asymptotic stability of the zero solution. For example, let

e(t) = t (|sint|−sint).

Then it is clear thate(t) is unbounded. By a straightforward calculation, we obtain

E(t) =

 2π(m−1)(2m−1) if 2π(m−1)≤ t ≤ π(2m−1)

2
(
πm(2m−1)−sint + t cost

)
if π(2m−1)≤ t ≤ 2πm

(6.1)

with m∈ N. Let

f (t) =
sint

exp(pE(t))
, g(t) = exp((p−1)E(t))sint and h(t) =

1
1+ t

,

whereE(t) is the function given in (6.1). Then,

Ψ(t) = ph(t)− pe(t)+
f (t)
g(t)

(
g(t)
f (t)

)′

= ph(t)− pe(t)+ pe(t) =
p

1+ t

for t ≥ 0. It is easy to confirm that all of the assumptions in Theorem 3.2 is satisfied. Thus,
the zero solution is globally asymptotically stable.

As mentioned in the last paragraph in Sect. 5, we cannot drop condition (5.1) in The-
orem 5.1. If we remove condition (5.1) from Theorem 5.1, then the phenomenon of over-
damping may well happen. For example, consider the half-linear differential system

x′ = φp∗(y),

y′ =−(p−1)φp(x)− (p−1)

(
(2+ t)(1+ t)2p−3+

2
1+ t

)
y.

(6.2)
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System (6.2) has a solution

(x(t),y(t)) =

(
2+ t
1+ t

,− 1

(1+ t)2(p−1)

)
, (6.3)

which satisfies the initial condition(x(0),y(0)) = (2,−1). In fact, since

e(t) = 0, f (t) = g(t) = 1 and h(t) = (2+ t)(1+ t)2p−3+
2

1+ t
(6.4)

in system (6.2), we obtain

−e(t)x(t)+ f (t)φp∗(y(t)) =− 1
(1+ t)2 = x′(t)

and

− (p−1)g(t)φp(x(t))− (p−1)h(t)y(t)

=−(p−1)
2+ t
1+ t

+
p−1

(1+ t)2(p−1)

{
(2+ t)(1+ t)2p−3+

2
1+ t

}
=

2(p−1)
(1+ t)2p−1 = y′(t).

The solution(x(t),y(t)) given by (6.3) approaches the point(1,0) ast → ∞. Hence, the zero
solution of (6.2) is not globally asymptotically stable.

From (6.4), it is clear that assumptions (A1) and (A2) and condition (3.1) are satisfied.
SinceΨ(t) = 2h(t) for t ≥ 0, it is easy to verify that conditions (3.3) and (3.4) are also
satisfied. However, condition (5.1) does not hold, because limt→∞ |h(t)| = ∞. Thus, all of
the assumptions in Theorem 5.1 are satisfied except thath(t) satisfies condition (5.1). This
means that condition (5.1) cannot be removed from Theorem 5.1.
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