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Abstract. The present paper is devoted to an investigation on the asymptotic
stability for the damped oscillators with multiple degrees of freedom,

x′′+h(t)x′+Ax = 0

and its generalization
Mx′′+C(t)x′+Kx = 0,

whereh : [0,∞) → [0,∞) is a function,A, M andK aren×n real constant ma-
trices. andC is ann×n matrix whose elements are real-valued functions. The
functionsh andC correspond to the damping coefficient and the damping ma-
trix, respectively. The origin(x,x′) = (0,0) is the only equilibrium of the above-
mentioned damped oscillators. Necessary and sufficient conditions are presented
for the equilibrium of these oscillators to be asymptotically stable. The obtained
conditions are given by the forms of certain growth conditions concerning the
dampingh andC, respectively.
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1. Introduction

The damped coupled oscillator

x′′+h(t)x′+Ax = 0 (1.1)

is one of very important models that continue to be researched from many angles
in a wide range of fields which covers pure science, applied science, and technol-
ogy. Here,′ = d/dt, x is ann-dimensional vector,h is a nonnegative and locally
integrable function on[0,∞), andA is a symmetricn×n real matrix.

For example, consider a mechanical system consisting ofn objects as follows.
The masses of the objects are identical. The value ism. The objects are coupled by
n+1 springs, and the springs at both ends are attached to walls. The stiffness of the
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i-th spring from the left iski (i = 1,2, . . . ,n+1). The objects of this system repeat a
horizontal reciprocating motion over a flat floor. Rolling friction is caused between
the objects and the floor. The friction coefficient of this horizontal surface can be
varied and it can be expressed by the functionc.

Let xi (i = 1,2, . . . ,n) be the displacement of thei-th object from its equilib-
rium position. Then, the equation of motion of this mechanical system is

mx′′1 +c(t)x′1+k1x1−k2(x2−x1) = 0,

mx′′2 +c(t)x′2+k2(x2−x1)−k3(x3−x2) = 0,

mx′′3 +c(t)x′3+k3(x3−x2)−k4(x4−x3) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

mx′′n−1+c(t)x′n−1+kn−1(xn−1−xn−2)−kn(xn−xn−1) = 0,

mx′′n +c(t)x′n+kn(xn−xn−1)+kn+1xn = 0.

This system can be rewritten to the oscillator (1.1) withh(t) = c(t)/m,

x =


x1

x2
x3
...

xn−1
xn

 and A=



k1+k2
m − k2

m 0 . . . 0 0
− k2

m
k2+k3

m − k3
m . . . 0 0

0 − k3
m

k3+k4
m . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . .
kn−1+kn

m − kn
m

0 0 0 . . . − kn
m

kn+kn+1
m


.

As another application example of (1.1), we can cite the coupled pendulum.
The pendulums of the same size are arranged at equal intervals in a row. The number
of pendulums isn. The length of thread isℓ. Each weight is horizontally connected
to the next weight with a spring. The number of springs isn− 1. Natural lengths
of springs are equal to the spacing of pendulums. The stiffness of thei-th spring
from the left iski (i = 1,2, . . . ,n− 1). The friction works at the pivot points of
the pendulums. The friction coefficient is expressed by the functionc. When the
displacements of the weights are small, the equation of motion is approximated to
the oscillator (1.1) withh(t) = c(t)/m,

A=



g
ℓ +

k1
m − k1

m 0 . . . 0 0
− k1

m
g
ℓ +

k1+k2
m − k2

m . . . 0 0
0 − k2

m
g
ℓ +

k2+k3
m . . . 0 0

...
...

...
. ..

...
...

0 0 0 . . . g
ℓ +

kn−2+kn−1
m − kn−1

m

0 0 0 . . . − kn−1
m

g
ℓ +

kn−1
m


,

whereg is the acceleration of gravity. We can find other application examples of
(1.1) to electric circuit theory and structural dynamics, etc. For example, refer to the
books [7, 15, 17, 23].

The oscillator (1.1) has the only equilibrium(x,x′) = (0,0). The purpose of
this paper is to give a necessary and sufficient condition for the equilibrium of (1.1)
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to be asymptotically stable. Theasymptotic stabilityof the equilibrium referred to
here is that every solutionx of (1.1) satisfies

lim
t→∞

x(t) = lim
t→∞

x′(t) = 0. (1.2)

Strictly speaking, the above-mentioned explanation is the definition in which the
equilibrium of (1.1) isattractive. As known well, however, the attractivity implies
the asymptotic stability because the oscillator (1.1) is linear. Needless to say, the
asymptotic stability for the oscillator (1.1) is a global properties of the equilibrium.
About the definitions of stability and attractivity, refer to the books [4, 6, 16, 18, 24]
for example. The study of the (global) asymptotic stability is one of main themes in
the qualitative theory of differential equations.

To describe our result concerning the asymptotic stability of (1.1), we intro-
duce two concepts as follows. A symmetricn×n real matrixP is said to bepositive
definiteif vTPv is positive for every nonzero column vectorv of n real numbers.
Here,vT denotes the transpose ofv. The damping coefficienth is said to belong to
F[WIP] if

∞

∑
n=1

∫ σn

τn

h(t)dt = ∞

for every pair of sequences{τn} and{σn} satisfying

liminf
n→∞

(σn− τn)> 0 and 0< limsup
n→∞

(τn+1−σn)< ∞.

The concept of the positive definite matrix is known well in linear algebra and its
applications. The concept of the weak integral positivity was first published in Hat-
vani [8]. It is clear that ifh has a positive lower bound, thenh belongs toF[WIP].
There is a possibility thath belongs toF[WIP] even if liminft→∞ h(t) = 0. For exam-
ple, 1/(1+t)∈F[WIP] and sin2t/(1+t)∈F[WIP] (for the proof, see [21, Proposition
2.1]). The following result is our main theorem.

Theorem 1.1 Suppose that there exist anε0 > 0 and aδ0 > 0 such that|h(t)−
h(s)| < ε0 for all t ≥ 0 and s≥ 0 with |t − s| < δ0 and suppose that h belongs to
F[WIP]. Then the equilibrium of(1.1) is asymptotically stable if and only if A is a
positive definite matrix and ∫ ∞

0

∫ t
0 eH(s)ds

eH(t)
dt = ∞, (1.3)

where

H(t) =
∫ t

0
h(s)ds.

Remark 1.1If h is uniformly continuous on[0,∞); namely, for anyε > 0, there
is a δ (ε) > 0 such that|h(t)− h(s)| < ε for all t ≥ 0 ands≥ 0 with |t − s| < δ ,
then the first assumption in Theorem 1.1 is satisfied with respect to anyε0 > 0 and
δ0 = δ (ε0). Of course, the converse is not necessarily true.
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Remark 1.2If there exists anh > 0 such that 0≤ h(t) ≤ h for t ≥ 0, then|h(t)−
h(s)| ≤ |h(t)|+ |h(s)| ≤ 2h for all t ≥ 0 ands≥ 0. Hence, the first assumption of
Theorem 1.1 is satisfied with respect toε0 = 2h and anyδ0 > 0.

Remark 1.3The first assumption of Theorem 1.1 may be satisfied even ifh is a
discontinuous function. For example, if

h(t) =

 a if t ∈ In,

b if t ̸∈ In

for n ∈ N, where 0< a < b and{In} is a sequence of bounded intervals such that
Ii ∩ I j = φ (i ̸= j), then the first assumption holds. This step functionh belongs to
F[WIP].

Remark 1.4Condition (1.3) is the so-called growth condition on the damping coef-
ficienth. Since ∫ ∞

0

∫ t
0 eH(s)ds

eH(t)
dt =

∫ ∞

0

∫ t

0
e−(H(t)−H(s))dsdt,

condition (1.3) can be expressed in the double integral. This double integral (1.3)
was given for the first time by Smith [19]. He discussed the asymptotic stability of
the equilibrium of a single degree of freedom system under the strong restriction
condition that there exists anh > 0 such thath(t) ≥ h for t ≥ 0. Because of this
restriction, Smith’s result cannot be applied to the case of liminft→∞ h(t) = 0. For
this reason, many attempts were carried out to weaken this restriction. One of the
attempts is a setting of the family of functions namedF[WIP]. The historical devel-
opment of this research is concisely summarized in [10, 20].

Remark 1.5It is known that the equilibrium of dynamical systems with one degree
of freedom can be not become an asymptotically stable when the damping coeffi-
cient of the system increases fast or it decreases fast. In Theorem 1.1, the assumption
thath∈F[WIP] prohibits too rapidly decline ofh. On the other hand, condition (1.3)
prohibits too rapidly growth ofh. For example, ifh is bounded orh(t) = t, then
condition (1.3) holds; ifh(t) = t2, then condition (1.3) fails to hold. Zheng and the
present author [26] discussed the issue what the upper limit of the growth rate which
can guarantee that condition (1.3) is satisfied is.

As seen immediately from the definition ofF[WIP], if h belongs toF[WIP],
then

lim
t→∞

H(t) = ∞. (1.4)

Hatvani et al. [11] proved that condition (1.3) is equivalent to
∞

∑
n=1

(
H−1(n)−H−1(n−1)

)2
= ∞

under the assumption (1.4), where

H−1(r) = min{t ∈ R : H(t)≥ r}.
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Note that the integralH is not necessarily strictly increasing becauseh(t) is
allowed to become zero at a certaint. For this reason, the inverse functionH−1 may
be discontinuous but it is strictly increasing on[0,∞).

Using their method, we can prove the following equivalence relation (we omit
the proof).

Proposition 1.2 Under the assumption(1.4),condition(1.3)holds if and only if∫ ∞

0

∫ t
0 eρH(s)ds

eρH(t)
dt = ∞

for anyρ > 0.

2. Damped single oscillator

Consider the damped linear oscillator

x′′+h(t)x′+ω2x= 0, (2.1)

whereω is a positive constant andh is the same function given in Eq. (1.1). Needless
to say, the only equilibrium of (2.1) is(x,x′) = (0,0).

The present author [20] has recently obtained a necessary and sufficient condi-
tion which guarantees that the equilibrium of damped nonlinear oscillators including
Eq. (2.1) is globally asymptotically stable. By applying this result to Eq. (2.1), we
can derive the following result.

Theorem A Suppose that h is uniformly continuous, and it belongs toF[WIP]. Then
the equilibrium of(2.1) is asymptotically stable if and only if condition(1.3)holds.

Theorem A contains many results of previous researches concerning the as-
ymptotic stability for Eq. (2.1). We will try a further extension.

Theorem 2.1 Suppose that there exist anε0 > 0 and aδ0 > 0 such that|h(t)−
h(s)| < ε0 for all t ≥ 0 and s≥ 0 with |t − s| < δ0 and suppose that h belongs to
F[WIP]. Then the equilibrium of(2.1)is asymptotically stable if and only if condition
(1.3)holds.

Remark 2.1To prove the necessity of Theorem 2.1, we will show that there exists
a solution of (2.2) which does not approach the origin provided that∫ ∞

0

∫ t
0 eH(s)ds

eH(t)
dt < ∞.

The necessity was proved in Smith [19, Theorem 1]. This method was given by
Wintner [22]. Wintner’s method was generalized so that nonlinear differential equa-
tions including Eq. (2.1) could be applied (see [20, Theorems 2.1 and 3.2]). We will
prove the necessity by using another method.
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Proof of Theorem 2.1By puttingy= x′/ω as a new variable, Eq. (2.1) becomes the
planar system

x′ = ωy,

y′ =−ωx−h(t)y.
(2.2)

System (2.2) has the zero solution(x,y)≡ (0,0), which corresponds to the equilib-
rium of (2.1). Hence, to prove Theorem 2.1, we have only to show that under the
assumptions concerningh, every solution(x,y) of (2.2) approaches the origin(0,0)
ast tends to∞ if and only if condition (1.3) holds.

Necessity. We can choose aT ≥ 0 so large that∫ ∞

T

∫ t
0 eH(s)ds

eH(t)
dt <

1
2ω2 . (2.3)

Consider the solution(x̃, ỹ) of (2.2) that passes through(1,0) att =T. Since ˜x′(T) =
ω ỹ(T) = 0 andỹ′(T) =−ω x̃(T)−h(t)ỹ(T) =−ω < 0, it turns out that(x̃, ỹ) enters
the fourth quadrant

Q4
def
=

{
(x,y) : x> 0 and y< 0

}
in a right-hand neighborhood oft = T. Taking account of the vector field inQ4, we
see that(x̃, ỹ) does not move to the first quadrant

Q1
def
= {(x,y) : x> 0 andy> 0}

from Q4 directly ast increases. Also, we see that 0≤ x̃(t)< 1 as long as(x̃, ỹ) is in
Q4.

Suppose that there exists aT∗ > T such that ˜x(T∗) = 1/2 andx̃(t) > 1/2 for
T ≤ t < T∗. Since

ỹ′(t)+h(t)ỹ(t) =−ω x̃(t)≥−ω
for T ≤ t < T∗, it follows that(

eH(t)ỹ(t)
)′ ≥−ω eH(t) for T ≤ t < T∗.

Integrate both sides of this inequality fromT to t < T∗ to obtain

eH(t)ỹ(t)≥ eH(T)ỹ(T)−ω
∫ t

T
eH(s)ds=−ω

∫ t

T
eH(s)ds.

Hence, by (2.2) we have

x̃′(t) = ω ỹ(t)≥−ω2
∫ t

T eH(s)ds

eH(t)

for T ≤ t < T∗. From this estimation and (2.3) it follows that

x̃(T∗)≥ x̃(T)−ω2
∫ T∗

T

∫ t
T eH(s)ds

eH(t)
dt ≥ 1−ω2

∫ ∞

T

∫ t
0 eH(s)ds

eH(t)
dt >

1
2
.

This contradicts the assumption that ˜x(T∗) = 1/2. Hence, suchT∗ does not exist.
This fact means that the solution(x̃, ỹ) of (2.2) stays in the region{

(x,y) : 1/2< x≤ 1 and y≤ 0
}

for t ≥ T. Thus,(x̃, ỹ) does not approach the origin.
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Sufficiency. Let (x,y) be any solution of (2.1) with the initial timet0 ≥ 0 and
define

v(t) =
1
2

(
x2(t)+y2(t)

)
. (2.4)

Then, we have

v′(t) = x(t)x′(t)+y(t)y′(t) =−h(t)y2(t)≤ 0

for t ≥ t0. Hence,v is a decreasing function on[0,∞). Sincev(t) ≥ 0 for t ≥ t0,
there exists a limiting valuev∗ ≥ 0. If v∗ = 0, then it follows from (2.4) that the
solution(x,y) of (2.2) tends to the origin ast → ∞. This is our desired conclusion.
Thus, we have only to show that the case in whichv∗ > 0 does not occur. By way of
contradiction, we suppose thatv∗ is positive. Then, there exists aT1 ≥ t0 such that

0< v∗ ≤ v(t)≤ 2v∗ for t ≥ T1. (2.5)

Hereafter, we will complete the proof of sufficiency in two steps. In the first
step, we show thaty approaches zero ast → ∞. If lim t→∞ y(t) = 0, then from (2.4)
we see that limt→∞ x(t) =

√
2v∗ > 0 or limt→∞ x(t) = −

√
2v∗ < 0. In the second

step, we will lead a contradiction.
Since|y| is bounded, it has finite lower and upper limits. In the first step, we

show that the inferior limit is zero, and then show that the superior limit is also zero.
In the second step, we examine the movement of(x,y) in the wholex-y plane in
details.

Step(1): We first suppose that liminft→∞ |y(t)| > 0. Then, we can choose a
γ > 0 and aT2 ≥ t0 such that|y(t)|> γ for t ≥ T2. Hence, we have

v′(t) =−h(t)y2(t)≤−γ2h(t)

for t ≥ T2. Integrating this inequality fromt0 to t, we obtain

−v(t0)< v∗−v(t0)≤ v(t)−v(t0) =
∫ t

t0
v′(s)ds≤−γ2

∫ t

T2

h(s)ds.

However, the integral ofh diverges to∞ ast tends to∞, becauseh belongs toF[WIP].
Hence, this inequality does not hold. Thus, we conclude that liminft→∞ |y(t)|= 0.

Next, we suppose that limsupt→∞ |y(t)| def
= µ > 0. Letε be so small enough as

to satisfy the inequalities 0< ε < min
{

µ/2,
√

v∗/2
}

,

4ε
δ0

+2(1+2ε0)ε <
√

2
(
v∗−2ε2

)
ω. (2.6)

Note that the left-hand side of this inequality approaches 0 and the right-hand side of
this inequality approaches

√
2v∗ω asε → 0.. Hence, we can find a positive number

ε which satisfies (2.6).
We can choose three sequences{sn}, {τn} and{σn} with T1 < τn < sn < σn ≤

τn+1 andτn → ∞ asn→ ∞ such that|y(sn)|= 2ε, |y(τn)|= |y(σn)|= ε and

|y(t)| ≥ ε for τn < t < σn, (2.7)

|y(t)| ≤ 2ε for σn < t < τn+1, (2.8)

ε < |y(t)|< 2ε for τn < t < sn. (2.9)
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In fact, since the inferior limit of|y(t)| is zero, there exists at∗ > T1 such that
|y(t∗)|< ε . Because

limsup
t→∞

|y(t)|= µ > 2ε,

we can choose numberss1, τ1 andσ1 such thats1 = inf
{

t > t∗ : |y(t)| > 2ε
}

, τ1 =

sup
{

t < s1 : |y(t)|< ε
}

andσ1 = inf
{

t > s1 : |y(t)|< ε
}

. It is clear that|y(s1)|= 2ε,
|y(τ1)|= |y(σ1)|= ε and|y(t)| ≥ ε for τ1 < t < σ1. Usingσ1 instead oft∗, we define
τ2 andσ2 similarly to τ1 andσ1, and so on. Then, we obtain three sequences{sn},
{τn} and{σn} with n∈ N such thatsn = inf

{
t > σn−1 : |y(t)|> 2ε

}
, τn = sup

{
t <

sn : |y(t)| < ε
}

andσn = inf
{

t > sn : |y(t)| < ε
}

. It is also clear that|y(sn)| = 2ε,
|y(τn)|= |y(σn)|= ε,

|y(t)| ≥ ε for τn < t < σn,

|y(t)| ≤ 2ε for σn < t < τn+1

and
ε < |y(t)|< 2ε for τn < t < sn.

Hence, the inequalities (2.7)–(2.9) are satisfied.
Using (2.9) and the second equality of (2.2), we can estimate that

3ε2 = y2(sn)−y2(τn) = 2
∫ sn

τn

y(t)y′(t)dt

=−2ω
∫ sn

τn

x(t)y(t)dt−2
∫ sn

τn

h(t)y2(t)dt

≤ 2ω
∫ sn

τn

|x(t)||y(t)|dt ≤ 4εω
∫ sn

τn

|x(t)|dt.

By (2.5), we have
|x(t)| ≤

√
2v(t)≤ 2

√
v∗

for t ≥ T1. Hence, we obtain

3ε2 ≤ 4εω
∫ sn

τn

|x(t)|dt ≤ 8
√

v∗εω(sn− τn);

namely,

sn− τn ≥
3ε

8
√

v∗ω
def
= m> 0

for eachn∈ N. It is clear that the positive numberm is independent ofn∈ N. Since
[τn,sn]⊊ [τn,σn], we see that liminfn→∞(σn− τn)≥ m> 0.

From the assumption ofh(t) it follows that

|h(t)−h(σn)|< ε0 for σn−δ0 < t < σn+δ0. (2.10)

Let us examine the value ofh(t) at t = σn for eachn∈ N. Define

S= {n∈ N : h(σn)≥ 1+ ε0}.
We will show that the number of elements in the setS is finite. Suppose that the
number of elements is infinite. Let cardSdenote the cardinal number of the setS.
As shown above,τn+m< σn for eachn∈N. Let ℓ= min{δ0,m}. Then, from (2.7)
and (2.10) it follows that

|y(t)| ≥ ε for σn− ℓ≤ t ≤ σn,
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and thatn∈ S implies

h(t)≥ 1 for σn− ℓ≤ t ≤ σn.

Hence, we obtain ∫ σn

σn−ℓ
h(t)y2(t)dt ≥ ℓε2 if n∈ S.

Using this inequality, we get

v∗−v(t0)≤ v(t)−v(t0) =
∫ t

t0
v′(s)ds=−

∫ t

t0
h(s)y2(s)ds

≤− ∑
n∈S

∫ σn

σn−ℓ
h(t)y2(t)dt =−ℓε2cardS=−∞.

This is a contradiction.
Since the number of elements in the setS is finite, we can find anN ∈ N such

that

h(σn)< 1+ ε0 for n≥ N. (2.11)

We next show thatτn+1−σn ≤ δ0 for n≥ N. Suppose there exists ann0 ≥ N such
that

σn0 +δ0 < τn0+1. (2.12)

From (2.4), (2.5) and (2.8), we obtain

1
2

x2(t) = v(t)− 1
2

y2(t)≥ v∗−2ε2 def
= w∗

for σn0 ≤ t ≤ τn0+1. Note thatw∗ is positive because 0< ε <
√

2v∗. We proceed
the proof by dividing into two cases: (a)x(t)≥

√
2w∗ > 0 for σn0 ≤ t ≤ τn0+1; (b)

x(t)≤−
√

2w∗ < 0 for σn0 ≤ t ≤ τn0+1. Note that

h(t)< ε0+h(σn0)< 1+2ε0 for σn0 ≤ t ≤ σn0 +δ0

because of (2.10) and (2.11). In the former case, using (2.6) and (2.8) with the
second equation of (2.2), we get

y′(t) =−ωx(t)−h(t)y(t)≤−
√

2w∗ω +h(t)|y(t)|

≤ −
√

2w∗ω +2(1+2ε0)ε <−4ε
δ0

for σn0 ≤ t ≤ σn0 +δ0. In the latter case, we get

y′(t) =−ωx(t)−h(t)y(t)≥
√

2w∗ω −h(t)|y(t)|

≥
√

2w∗ω −2(1+2ε0)ε >
4ε
δ0

for σn0 ≤ t ≤ σn0 +δ0. Thus, in either case, we have

|y′(t)|> 4ε
δ0

for σn0 ≤ t ≤ τn0+1.
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Taking (2.12) into account and integrating this inequality fromσn0 to σn0 + δ0, we
obtain

|y(σn0 +δ0)|+ |y(σn0)| ≥

∣∣∣∣∣
∫ σn0+δ0

σn0

y′(t)dt

∣∣∣∣∣=
∫ σn0+δ0

σn0

|y′(t)|dt > 4ε.

However, it follows from (2.8) that

|y(σn0 +δ0)|+ |y(σn0)| ≤ 4ε.

This is a contradiction. We therefore conclude that limsupn→∞(τn+1−σn)≤ δ0 <∞.
From how to choose sequences{τn} and{σn}, we see that

0< limsup
n→∞

(τn+1−σn).

Recall that liminfn→∞(σn− τn) ≥ m> 0. Sinceh belongs toF[WIP], we conclude
that

∞

∑
n=1

∫ σn

τn

h(t)dt = ∞. (2.13)

On the other hand, it follows from (2.7) that∫ ∞

t0
v′(t)dt =−

∫ ∞

t0
h(t)y2(t)dt ≤−ε2

∞

∑
n=1

∫ σn

τn

h(t)dt.

Since ∫ ∞

t0
v′(t)dt = lim

t→∞
v(t)−v(t0) = v∗−v(t0)< 0,

we obtain
∞

∑
n=1

∫ σn

τn

h(t)dt ≤ v(t0)−v∗

ε2 < ∞.

This contradicts (2.13). Thus, we conclude that limsupt→∞ |y(t)|= µ = 0. The proof
of Step (1) is now complete.

Step(2): From the conclusion of Step (1) it follows that limt→∞ x(t) =
√

2v∗ >
0 or limt→∞ x(t) = −

√
2v∗ < 0. Taking into account of the vector field of (2.2),

we see that the solution(x,y) has to approach the point
(√

2v∗,0
)

or the point(
−
√

2v∗,0
)

by passing through the region{
(x,y) : x>

√
2v∗ and y< 0

}
or the region {

(x,y) : x<−
√

2v∗ and y> 0
}

ultimately. Hence, we can find aT3 ≥ t0 such that

x(t)>
√

2v∗ and y(t)< 0 for t ≥ T3 (2.14)
or

x(t)<−
√

2v∗ and y(t)> 0 for t ≥ T3. (2.15)

We consider only the former, because the latter is carried out in the same way by
using (2.15) instead of (2.14). In the former, by (2.14) we have

y′(t)+h(t)y(t) =−ωx(t)<−
√

2v∗ω < 0
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for t ≥ T3. Hence, by (2.14) again, we get

y(t)< y(t)−e(H(T3)−H(t))y(T3)<−
√

2v∗ω
∫ t

T3
eH(s)ds

eH(t)

for t ≥ T3. From this inequality it follows that

x′(t) = ωy(t)<−
√

2v∗ω2

∫ t
T3

eH(s)ds

eH(t)

for t ≥ T3. Integrating this inequality fromT3 to t, we obtain

x(t)<−
√

2v∗ω2
∫ t

T3

∫ s
T3

eH(τ)dτ
eH(s)

ds+x(T3).

Sinceh(t)≥ 0 for t ≥ 0, it is clear that∫ ∞

0
eH(t)dt = ∞.

Hence, there exists aT4 ≥ T3 such that∫ s

T3

eH(τ)dτ >
1
2

∫ s

0
eH(τ)dτ for s≥ T4.

Using this inequality, we can evaluate that

√
2v∗ < x(t)<−

√
v∗

2
ω2

∫ t

T4

∫ s
0eH(τ)dτ

eH(s)
ds−

√
2v∗ω2

∫ T4

T3

∫ s
T3

eH(τ)dτ
eH(s)

ds+x(T3)

for t ≥ T4. This contradicts condition (1.3). The proof of Step (2) is now complete.
Theorem 2.1 is thus proved. □

Remark 2.2 The damping coefficienth is said to belong toF[IP] if

∞

∑
n=1

∫ σn

τn

h(t)dt = ∞

for every pair of sequences{τn} and{σn} satisfying

liminf
n→∞

(σn− τn)> 0.

The integral positivity was introduced by Matrosov [14]. The concept of the integral
positivity is quite strong than that of the weak integral positivity. For example, the
functions 1/(1+t) and sin2t/(1+t) belong toF[WIP], but these functions do not be-
long toF[IP]. In the step (1) of the sufficiency, we proved that limt→∞ |y(t)|= 0. If h
belongs toF[IP], the convergence ofy(t) is shown even in more general mechanical
systems (for example, see [9, 20]).

The termω2x in Eq. (1.1) expresses the restoring force. Since the restoring
force is power that returns the object to the original position when the object is
displaced slightly from the equilibrium, we assumed the spring constant (named
ω2) to be positive in the argument above. Of course, from a mathematical interest,
we may treat the case that the spring constant is negative.
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Proposition 2.2 Consider the equation

x′′+h(t)x′+λx= 0. (2.16)

Then the equilibrium is not asymptotically stable ifλ < 0.

Proof Let ϕ be any solution of (2.16) with the initial timet0 ≥ 0. Consider the case
that (ϕ(t0),ϕ ′(t0)) is in the first quadrantQ1. We can easily confirm thatQ1 is a
positively invariant set for the system

x′ = y,

y′ =−λ x−h(t)y
(2.17)

which is equivalent to Eq. (2.16). Let(x,y) be a solution of (2.17), which corre-
sponds to the solutionϕ. Then, from the vector field of (2.17), we see that the
solution curve of(x,y) moves from the left to the right throughQ1. Hence, it turns
out thatx(t) > x(t0) andy(t) > 0 for t > t0, and therefore, the solution(x,y) does
not approach the origin ast tends to∞. This means that the equilibrium of (2.16) is
not asymptotically stable. □

Remark 2.3In the proof of Proposition 2.2, we do not use the assumption thath is
a nonnegative function on[0,∞).

Remark 2.4All nontrivial solutions(x,y) of (2.17) are not necessarily unbounded.
There is a possibility that a solution curve of (2.17) approaches a certain point other
than the origin on thex-axis.

Remark 2.5In the case thatλ = 0, the equilibrium of (2.16) is not asymptotically
stable.

3. Proof of the main result

SinceA is a symmetricn×n real matrix, all eigenvalues ofA are real numbers. As
a basic knowledge of linear algebra, it is well-known thatA is a positive definite
matrix if and only if all of its eigenvalues are positive.

Proof of Theorem 1.1For i = 1,2, . . . ,n, let λi be an eigenvalue ofA andvi be an
eigenvector forA corresponding to the eigenvalueλi . Let B be then×n matrix such
that

B= (v1 v2 · · · vn)
T.

Then, it is clear that detB ̸= 0. Multiplying Eq. (1.1) by the matrixB from the left,
we get

Bx′′+h(t)Bx′+BAx = 0. (3.1)
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Taking into account that(Avi)
T = vT

i AT and(Avi)
T =(λi vi)

T = λi vT
i for i = 1,2, . . . ,

n, we see that

BA = BAT =


vT

1
vT

2...
vT

n

AT =


vT

1 AT

vT
2 AT

...
vT

n AT

=


λ1vT

1
λ2vT

2...
λnvT

n

.

Let yi = vT
i x. Then, Eq. (3.1) becomes the isolated system of second-order differen-

tial equations 

y′′1 +h(t)y′1+λ1y1 = 0,

y′′2 +h(t)y′2+λ2y2 = 0,

· · · · · · · · · · · · · · ·

y′′n +h(t)y′n+λnyn = 0,

(3.2)

because

Bx′ =


vT

1
vT

2...
vT

n




x′1
x′2...
x′n

=


vT

1 x′

vT
2 x′
...

vT
n x′

=


(vT

1 x)′

(vT
2 x)′
...

(vT
n x)′

=


y′1
y′2...
y′n

,

and

Bx′′ =


vT

1
vT

2...
vT

n




x′′1
x′′2...
x′′n

=


vT

1 x′′

vT
2 x′′
...

vT
n x′′

=


(vT

1 x)′′

(vT
2 x)′′
...

(vT
n x)′′

=


y′′1
y′′2...
y′′n

.

Note that the system (3.2) consists ofN oscillators which are not coupled to each
other. Lety = (y1,y2, . . . ,yn)

T. Then, we can rewrite system (3.2) as

y′′+h(t)y′+Dy = 0, (3.3)

where

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn

.

Sufficiency. SinceA is a positive definite matrix, all eigenvalues are positive.
Hence, we may denote the eigenvalues byω2

i > 0 instead ofλi . By virtue of Theo-
rem 2.1, we conclude that every solutionyi of the single oscillator

y′′i +h(t)y′i +ω2
i yi = 0, i = 1,2, . . . ,n (3.4)

and its derivativey′i approach zero ast tends to∞. Hence, every solutiony of (3.3)
satisfies

lim
t→∞

y(t) = lim
t→∞

y′(t) = 0.
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Since

y =


y1

y2
...

yn

=


vT

1 x
vT

2 x
...

vT
n x

= (v1 v2 · · · vn)
T x = Bx,

it follows thatx=B−1y. Hence, every solutionx(t) of (3.1) satisfies condition (1.2).
We therefore conclude that the equilibrium of (1.1) is asymptotically stable.

Necessity. If A is not a positive definite matrix though it is symmetric, then we
can find an integerj with 1≤ j ≤ n such thatλ j ≤ 0. Hence, from Proposition 2.2
and Remark 2.3, it turns out that a solutiony j(t) of the equation

y′′j +h(t)y′j +λ j y j = 0

or its derivativey′j(t) do not approach zero ast →∞. Sincey=(y1,y2, . . . , . . . ,yn)
T =

Bx and detB ̸= 0, we can choose a solutionx(t) of (3.1) which does not satisfy con-
dition (1.2). Thus, the equilibrium of (1.1) is not asymptotically stable.

If A is a positive definite matrix, then all the eigenvalues ofA is real and posi-
tive. Hence, we may denote the eigenvalues byω2

i > 0 (i = 1,2, . . . ,n). If condition
(1.3) does not hold, then by means of Theorem 2.1, we see that the equilibrium of
(3.4) is not asymptotically stable for alli. Hence, the equilibrium of (3.3) is also
not asymptotically stable. Recall that Eq. (3.1) is equivalent to Eq. (3.3), because
y = Bx andBA= DB. Since detB ̸= 0, we conclude that the equilibrium of (1.1) is
not asymptotically stable. □

4. Generalization to proportional viscous damping systems

The equation of motion of dynamical systems with multiple degrees of freedom can
be written in matrix form as:

Mx′′+Cx′+Kx = 0,

whereM, C andK aren×n real constant matrices. In mechanical, civil, architec-
tural, and other fields of engineering, the matricesM, C andK are called the mass,
damping and stiffness matrices, respectively. For example, refer to [3, 12, 13, 23,
25]. It is often assumed that these matrices have the relation that

C= αM+βK,

whereα andβ are positive numbers. When the damping matrixC is represented by
such a linear combination of the mass matrixM and the stiffness matrixK, this sys-
tem is said to be a proportional viscous damping model. As to proportional viscous
damping, see [1, 2, 5] for example.

In this section, we will attempt to extend Theorem 1.1 to be able to apply to
the time-varying system

Mx′′+C(t)x′+Kx = 0, (4.1)

in which M is ann×n real regular matrix,M−1K is a symmetricn×n real matrix
andC is ann×n matrix whose elements are real-valued functions. We assume that

C(t) = f (t)M+g(t)K for t ≥ 0, (4.2)
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where f , g: [0,∞)→ [0,∞) is locally integrable functions. Let

h̃(t) = f (t)+g(t) and H̃(t) =
∫ t

0
h̃(s)ds

for t ≥ 0. Then, we have the following result.

Theorem 4.1 Suppose that there exist anε0 > 0 and aδ0 > 0 such that| f (t)−
f (s)|< ε0 and|g(t)−g(s)|< ε0 for all t ≥ 0 and s≥ 0 with |t−s|< δ0 and suppose
that h̃ belongs toF[WIP]. Then, under the assumption(4.2),the equilibrium of(4.1)
is asymptotically stable if and only if M−1K is a positive definite matrix and∫ ∞

0

∫ t
0 eH̃(s)ds

eH̃(t)
dt = ∞. (4.3)

Proof Let λ1, λ2, . . . , λn be eigenvalues ofM−1K. SinceM−1K is a symmetric
n×n real matrix, all eigenvaluesλi (i = 1,2, . . . ,n) are real numbers. Letvi be an
eigenvector forM−1K corresponding to the eigenvalueλi and letB be then× n
matrix such that

B= (v1 v2 · · · vn)
T.

Then, by the same manner as in the proof of Theorem 1.1, we can confirm that
BM−1K = DB, where

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn

 .

Multiplying Eq. (4.1) by the matrixBM−1 from the left, we get

BEx′′+BM−1C(t)x′+BM−1Kx = 0,

whereE is then×n identity matrix. From (4.2) it follows that

BM−1C(t) = f (t)B+g(t)BM−1K for t ≥ 0.

SinceBM−1K = DB, we see that Eq. (4.1) is equivalent to

(Bx)′′+
(

f (t)E+g(t)D
)
(Bx)′+D(Bx) = 0 (4.4)

provided that (4.2) holds. Letyi = vT
i x (i = 1,2, . . . ,n) andy=(y1,y2, . . . ,yn)

T =Bx.
Then, we obtain

y′′+
(

f (t)E+g(t)D
)
y′+Dy = 0; (4.5)

namely, the isolated system of second-order differential equations

y′′1 +
(

f (t)+λ1g(t)
)

y′1+λ1y1 = 0,

y′′2 +
(

f (t)+λ2g(t)
)

y′2+λ2y2 = 0,

· · · · · · · · · · · · · · ·

y′′n +
(

f (t)+λng(t)
)

y′n+λnyn = 0.
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Sufficiency. SinceM−1K is a positive definite matrix, all eigenvaluesλi (i =
1,2, . . . ,n) are positive. Fori = 1,2, . . . ,n, let εi = (1+λi)ε0. Then, by the assump-
tion of f andg, we have∣∣ f (t)+λig(t)−

(
f (s)+λig(s)

)∣∣≤ | f (t)− f (s)|+λi |g(t)−g(s)|< εi

for all t ≥ 0 ands≥ 0 with |t −s|< δ0.
If λi ≥ 1 for somei, then

1
λi

(
f (t)+λig(t)

)
≤ h̃(t)≤ f (t)+λig(t)

for t ≥ 0, becausef (t)≥ 0 andg(t)≥ 0 for t ≥ 0. Sinceh̃ belongs toF[WIP], we see
that

∞

∑
n=1

∫ σn

τn

(
f (t)+λig(t)

)
dt ≥

∞

∑
n=1

∫ σn

τn

h̃(t)dt = ∞.

Hence,f +λi g also belongs toF[WIP]. Let

F(t) =
∫ t

0
f (s)ds and G(t) =

∫ t

0
g(s)ds.

Then, we have

H̃(t)− H̃(s) =
∫ t

s
h̃(s)ds≥ 1

λi

∫ t

s

(
f (τ)+λig(τ)

)
dτ

=
1
λi

(
F(t)−F(s)+λi

(
G(t)−G(s)

))
,

and therefore,∫ ∞

0

∫ t
0 eF(s)+λiG(s)ds

eF(t)+λiG(t)
dt =

∫ ∞

0

∫ t

0
e−(F(t)−F(s)+λi(G(t)−G(s)))dsdt

≥
∫ ∞

0

∫ t

0
e−λi(H̃(t)−H̃(s))dsdt =

∫ ∞

0

∫ t
0 eλi H̃(s)ds

eλi H̃(t)
dt.

From (4.3) and Proposition 1.2, we see that∫ ∞

0

∫ t
0 eλi H̃(s)ds

eλi H̃(t)
dt = ∞.

Hence, by means of Theorem 2.1, we conclude that every solutionyi of the single
oscillator

y′′i +
(

f (t)+λig(t)
)

y′i +λiyi = 0, i = 1,2, . . . ,n (4.6)

and its derivativey′i approach zero ast tends to∞.
If 0 < λi < 1 for somei, then

f (t)+λig(t)≤ h̃(t)≤ 1
λi

(
f (t)+λig(t)

)
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for t ≥ 0, becausef (t) ≥ 0 andg(t) ≥ 0 for t ≥ 0. Hence,h̃ ∈ F[WIP] implies
λi( f + g) ∈ F[WIP] and f +λi g∈ F[WIP]. Also, we see that

H̃(t)− H̃(s) =
∫ t

s
h̃(s)ds≥

∫ t

s

(
f (τ)+λig(τ)

)
dτ

= F(t)−F(s)+λi
(
G(t)−G(s)

)
.

From this estimation and (4.3), we obtain∫ ∞

0

∫ t
0 eF(s)+λiG(s)ds

eF(t)+λiG(t)
dt =

∫ ∞

0

∫ t

0
e−(F(t)−F(s)+λi(G(t)−G(s)))dsdt

≥
∫ ∞

0

∫ t

0
e−(H̃(t)−H̃(s))dsdt =

∫ ∞

0

∫ t
0 eH̃(s)ds

eH̃(t)
dt = ∞.

Hence, by virtue of Theorem 2.1, we conclude that every solutionyi of (4.6) and its
derivativey′i approach zero ast tends to∞.

Thus, every solutiony = (y1,y2, . . . ,yn)
T of (4.5) satisfies

lim
t→∞

y(t) = lim
t→∞

y′(t) = 0.

Taking into account thaty = Bx and detB ̸= 0, we see that every solutionx of
(4.4) satisfies condition (1.2). We therefore conclude that the equilibrium of (4.1) is
asymptotically stable provided that (4.2) holds.

Necessity. There are two cases to be considered: (i)M−1K is not a positive
definite matrix; (ii)M−1K is a positive definite matrix and condition (1.3) does not
hold. In both cases, we can proceed our argument by the same way as the proof of
the necessity of Theorem 1.1.

Case (i). There exists a nonpositive eigenvalueλ j of M−1K for some integer
j with 1≤ j ≤ n. Proposition 2.2 and Remark 2.3 assert that the equilibrium of the
equation

y′′j +
(

f (t)+λ jg(t)
)

y′j +λ j y j = 0

is not asymptotically stable. Sincey = Bx and detB ̸= 0, the equilibrium of (4.4) is
also not asymptotically stable. Hence, the equilibrium of (4.1) is not asymptotically
stable provided that (4.2) holds.

Case (ii). All eigenvalues ofM−1K are positive. Hence, from Theorem 2.1 it
turns out that the equilibrium of (4.6) is not asymptotically stable for alli. This
means that the equilibrium of (4.5) is not asymptotically stable. Since detB ̸= 0 and
BM−1K =DB, we conclude that the equilibrium of (4.1) is not asymptotically stable
provided that (4.2) holds. □

Remark 4.1For i = 1,2, . . . ,n, lethi = f +λi g. In Theorem 4.1, we may assume that
there exist anε0 > 0 and aδ0 > 0 such that|t −s| < δ0 implies |hi(t)−hi(s)| < ε0

for all i, instead of the assumption off andg.
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Remark 4.2Since f (t)≥ 0 andg(t)≥ 0 for t ≥ 0, if f ∈F[WIP] or g∈F[WIP], then
h̃= f +g∈ F[WIP]. However, the converse is not true. For example, let

f (t) =

 1/(1+ t) if 2(n−1)≤ t < 2n−1,

0 if 2n−1≤ t < 2n

and

g(t) =

 0 if 2(n−1)≤ t < 2n−1,

1/(1+ t) if 2n−1≤ t < 2n

for n∈N. Then,h̃(t) = 1/(1+ t) for t ≥ 0. Hence,̃h belongs toF[WIP] though both
f andg do not belong toF[WIP].
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