SOME RESULTS FOR ISOTONIC FUNCTIONALS VIA AN INEQUALITY DUE TO TOMINAGA

SILVESTRU SEVER DRAGOMIR
Communicated by Kanta Naito
(Received: November 4, 2016)

Abstract

In this paper we obtain some inequalities for isotonic functionals via a reverse of Young's inequality due to Tominaga.

1. Introduction

Let L be a linear class of real-valued functions $g: E \rightarrow \mathbb{R}$ having the properties (L1) $f, g \in L$ imply $(\alpha f+\beta g) \in L$ for all $\alpha, \beta \in \mathbb{R}$;
(L2) $\mathbf{1} \in L$, i.e., if $f_{0}(t)=1, t \in E$ then $f_{0} \in L$.
An isotonic linear functional $A: L \rightarrow \mathbb{R}$ is a functional satisfying
(A1) $A(\alpha f+\beta g)=\alpha A(f)+\beta A(g)$ for all $f, g \in L$ and $\alpha, \beta \in \mathbb{R}$.
(A2) If $f \in L$ and $f \geq 0$, then $A(f) \geq 0$.
The mapping A is said to be normalised if
(A3) $A(\mathbf{1})=1$.
Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Thus, they provide, for example, Jessen's inequality, which is a functional form of Jensen's inequality (see [2], [12] and [13]). For other inequalities for isotonic functionals see [1], [4]-[11] and [14]-[17].

We note that common examples of such isotonic linear functionals A are given by

$$
A(g)=\int_{E} g d \mu \text { or } A(g)=\sum_{k \in E} p_{k} g_{k},
$$

where μ is a positive measure on E in the first case and E is a subset of the natural numbers \mathbb{N}, in the second ($p_{k} \geq 0, k \in E$).

As is known to all, the famous Young inequality for scalars says that if $a, b>0$ and $\nu \in[0,1]$, then

$$
\begin{equation*}
a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \tag{1}
\end{equation*}
$$

[^0]with equality if and only if $a=b$. The inequality (1) is also called ν-weighted arithmetic-geometric mean inequality.

Tominaga [18] had proved a reverse Young inequality with the Specht's ratio [16] as follows:

$$
\begin{equation*}
(1-\nu) a+\nu b \leq S\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} . \tag{2}
\end{equation*}
$$

We recall that Specht's ratio is defined by

$$
S(h):=\left\{\begin{array}{l}
\left.\frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{h-1}\right.}\right) \\
\text { if } h \in(0,1) \cup(1, \infty) \\
1 \text { if } h=1 .
\end{array}\right.
$$

It is well known that $\lim _{h \rightarrow 1} S(h)=1, S(h)=S\left(\frac{1}{h}\right)>1$ for $h>0, h \neq 1$. The function is decreasing on $(0,1)$ and increasing on $(1, \infty)$.
Let $a, b \in[m, M] \subset(0, \infty)$, then $\frac{m}{M} \leq \frac{a}{b} \leq \frac{M}{m}$ with $\frac{m}{M}<1<\frac{M}{m}$. If $\frac{a}{b} \in\left[\frac{m}{M}, 1\right)$ then $S\left(\frac{a}{b}\right) \leq S\left(\frac{m}{M}\right)=S\left(\frac{M}{m}\right)$. If $\frac{a}{b} \in\left(1, \frac{M}{m}\right]$ then also $S\left(\frac{a}{b}\right) \leq S\left(\frac{M}{m}\right)$. Therefore for any $a, b \in[m, M]$ we have

$$
\begin{equation*}
(1-\nu) a+\nu b \leq S\left(\frac{M}{m}\right) a^{1-\nu} b^{\nu} \tag{3}
\end{equation*}
$$

In this paper we obtain some inequalities for isotonic functionals via a reverse of Young's inequality due to Tominaga. Reverses of Callebaut, Hölder and Hölder's related inequalities are also provided. Some examples for integrals and n-tuples of real numbers are given as well.

2. A Reverse of Callebaut's Inequality

We start with the following result:
Theorem 2.1. Let $A, B: L \rightarrow \mathbb{R}$ be two normalised isotonic functionals. If $f, g: E \rightarrow \mathbb{R}$ are such that $f \geq 0, g>0, f^{2}, g^{2}, f^{2(1-\nu)} g^{2 \nu}, f^{2 \nu} g^{2(1-\nu)} \in L$ for some $\nu \in[0,1]$ and

$$
\begin{equation*}
0<m \leq \frac{f}{g} \leq M<\infty \tag{4}
\end{equation*}
$$

for some constants m, M, then

$$
\begin{align*}
& A\left(f^{2(1-\nu)} g^{2 \nu}\right) B\left(f^{2 \nu} g^{2(1-\nu)}\right) \tag{5}\\
& \leq(1-\nu) A\left(f^{2}\right) B\left(g^{2}\right)+\nu A\left(g^{2}\right) B\left(f^{2}\right) \\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) A\left(f^{2(1-\nu)} g^{2 \nu}\right) B\left(f^{2 \nu} g^{2(1-\nu)}\right) .
\end{align*}
$$

Proof. For any $x, y \in E$ we have

$$
m^{2} \leq \frac{f^{2}(x)}{g^{2}(x)}, \frac{f^{2}(y)}{g^{2}(y)} \leq M^{2}
$$

If we use the inequalities (1) and (3) for

$$
a=\frac{f^{2}(x)}{g^{2}(x)}, b=\frac{f^{2}(y)}{g^{2}(y)},
$$

then we get

$$
\begin{align*}
\left(\frac{f^{2}(x)}{g^{2}(x)}\right)^{1-\nu}\left(\frac{f^{2}(y)}{g^{2}(y)}\right)^{\nu} & \leq(1-\nu) \frac{f^{2}(x)}{g^{2}(x)}+\nu \frac{f^{2}(y)}{g^{2}(y)} \tag{6}\\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right)\left(\frac{f^{2}(x)}{g^{2}(x)}\right)^{1-\nu}\left(\frac{f^{2}(y)}{g^{2}(y)}\right)^{\nu}
\end{align*}
$$

for any $x, y \in E$.
Now, if we multiply (6) by $g^{2}(x) g^{2}(y)>0$ then we get

$$
\begin{align*}
& f^{2(1-\nu)}(x) g^{2 \nu}(x) f^{2 \nu}(y) g^{2(1-\nu)}(y) \tag{7}\\
& \leq(1-\nu) f^{2}(x) g^{2}(y)+\nu g^{2}(x) f^{2}(y) \\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) f^{2(1-\nu)}(x) g^{2 \nu}(x) f^{2 \nu}(y) g^{2(1-\nu)}(y)
\end{align*}
$$

for any $x, y \in E$.
Fix $y \in E$. Then by (7) we have in the order of L that

$$
\begin{align*}
f^{2 \nu}(y) g^{2(1-\nu)}(y) f^{2(1-\nu)} g^{2 \nu} & \leq(1-\nu) g^{2}(y) f^{2}+\nu f^{2}(y) g^{2} \tag{8}\\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) f^{2 \nu}(y) g^{2(1-\nu)}(y) f^{2(1-\nu)} g^{2 \nu}
\end{align*}
$$

If we take the functional A in (8) we get

$$
\begin{align*}
& f^{2 \nu}(y) g^{2(1-\nu)}(y) A\left(f^{2(1-\nu)} g^{2 \nu}\right) \tag{9}\\
& \leq(1-\nu) g^{2}(y) A\left(f^{2}\right)+\nu f^{2}(y) A\left(g^{2}\right) \\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) f^{2 \nu}(y) g^{2(1-\nu)}(y) A\left(f^{2(1-\nu)} g^{2 \nu}\right),
\end{align*}
$$

for any $y \in E$.
This inequality can be written in the order of L as

$$
\begin{align*}
A\left(f^{2(1-\nu)} g^{2 \nu}\right) f^{2 \nu} g^{2(1-\nu)} & \leq(1-\nu) A\left(f^{2}\right) g^{2}+\nu A\left(g^{2}\right) f^{2} \tag{10}\\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) A\left(f^{2(1-\nu)} g^{2 \nu}\right) f^{2 \nu} g^{2(1-\nu)} .
\end{align*}
$$

Now, if we take the functional B in (10), then we get the desired result (5).
The following reverse of Cauchy-Bunyakovsky-Schwarz inequality for isotonic functionals holds:

Corollary 2.2. Let $A, B: L \rightarrow \mathbb{R}$ be two normalised isotonic functionals. If $f, g: E \rightarrow \mathbb{R}$ are such that $f \geq 0, g>0, f^{2}, g^{2}, f g \in L$ and the condition (4) holds true, then

$$
\begin{align*}
A(f g) B(f g) & \leq \frac{1}{2}\left[A\left(f^{2}\right) B\left(g^{2}\right)+A\left(g^{2}\right) B\left(f^{2}\right)\right] \tag{11}\\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) A(f g) B(f g)
\end{align*}
$$

In particular,

$$
\begin{equation*}
A^{2}(f g) \leq A\left(f^{2}\right) A\left(g^{2}\right) \leq S\left(\left(\frac{M}{m}\right)^{2}\right) A^{2}(f g) \tag{12}
\end{equation*}
$$

The following reverse Callebaut type inequality holds:
Corollary 2.3. Let $A: L \rightarrow \mathbb{R}$ be a normalised isotonic functional. If $f, g: E \rightarrow \mathbb{R}$ are such that $f \geq 0, g>0, f^{2}, g^{2}, f^{2(1-\nu)} g^{2 \nu}, f^{2 \nu} g^{2(1-\nu)} \in L$ for some $\nu \in[0,1]$ and the condition (4) is valid, then

$$
\begin{align*}
& A\left(f^{2(1-\nu)} g^{2 \nu}\right) A\left(f^{2 \nu} g^{2(1-\nu)}\right) \tag{13}\\
& \leq A\left(f^{2}\right) A\left(g^{2}\right) \\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) A\left(f^{2(1-\nu)} g^{2 \nu}\right) A\left(f^{2 \nu} g^{2(1-\nu)}\right)
\end{align*}
$$

Remark 2.4. If we replace ν by $\frac{1}{2}(1-\nu)$ with $\nu \in[0,1]$ in (13), then we get

$$
\begin{align*}
A\left(f^{1+\nu} g^{1-\nu}\right) A\left(f^{1-\nu} g^{1+\nu}\right) & \leq A\left(f^{2}\right) A\left(g^{2}\right) \tag{14}\\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) A\left(f^{1+\nu} g^{1-\nu}\right) A\left(f^{1-\nu} g^{1+\nu}\right)
\end{align*}
$$

provided that $f \geq 0, g>0, f^{2}, g^{2}, f^{1+\nu} g^{1-\nu}, f^{1-\nu} g^{1+\nu} \in L$ for some $\nu \in[0,1]$ and the condition (4) is valid.

Also, if we take $\nu=\frac{1}{2} \gamma$ with $\gamma \in[0,2]$, then we get

$$
\begin{align*}
A\left(f^{2-\gamma} g^{\gamma}\right) A\left(f^{\gamma} g^{2-\gamma}\right) & \leq A\left(f^{2}\right) A\left(g^{2}\right) \tag{15}\\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) A\left(f^{2-\gamma} g^{\gamma}\right) A\left(f^{\gamma} g^{2-\gamma}\right)
\end{align*}
$$

provided that $f \geq 0, g>0, f^{2}, g^{2}, f^{2-\gamma} g^{\gamma}, f^{\gamma} g^{2-\gamma} \in L$ for some $\nu \in[0,1]$ and the condition (4) is valid.

The inequality (15) is a reverse for the second inequality in the functional version of Callebaut inequality

$$
\begin{equation*}
A^{2}(f g) \leq A\left(f^{2-\gamma} g^{\gamma}\right) A\left(f^{\gamma} g^{2-\gamma}\right) \leq A\left(f^{2}\right) A\left(g^{2}\right) \tag{16}
\end{equation*}
$$

provided that $f^{2}, g^{2}, f^{2-\gamma} g^{\gamma}, f^{\gamma} g^{2-\gamma}, f g \in L$ for some $\gamma \in[0,2]$. For the discrete and integral of one real variable versions see [3].

3. A Reverse of Hölder's and Related Inequalities

First, observe that if $a, b>0$ and

$$
\begin{equation*}
0<L^{-1} \leq \frac{a}{b} \leq L<\infty \tag{17}
\end{equation*}
$$

for some $L>1$, then by (2) we have

$$
\begin{equation*}
(1-\nu) a+\nu b \leq S(L) a^{1-\nu} b^{\nu} \tag{18}
\end{equation*}
$$

for every $\nu \in[0,1]$.
Theorem 3.1. Let $A: L \rightarrow \mathbb{R}$ be a normalised isotonic functional and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. If $f, g: E \rightarrow \mathbb{R}$ are such that $f g, f^{p}, g^{q} \in L$ and

$$
\begin{equation*}
0<m_{1} \leq f \leq M_{1}<\infty, 0<m_{2} \leq g \leq M_{2}<\infty \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q} \leq S\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right) A(f g) \tag{20}
\end{equation*}
$$

Proof. Observe that, by (19) we have

$$
m_{1}^{p} \leq A\left(f^{p}\right) \leq M_{1}^{p} \text { and } m_{2}^{q} \leq A\left(g^{q}\right) \leq M_{2}^{q} .
$$

Also

$$
\left(\frac{m_{1}}{M_{1}}\right)^{p} \leq \frac{f^{p}}{A\left(f^{p}\right)} \leq\left(\frac{M_{1}}{m_{1}}\right)^{p}
$$

and

$$
\left(\frac{m_{2}}{M_{2}}\right)^{q} \leq \frac{g^{q}}{A\left(g^{q}\right)} \leq\left(\frac{M_{2}}{m_{2}}\right)^{q}
$$

giving that

$$
\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1} \leq \frac{\frac{f^{p}}{A\left(f^{p}\right)}}{\frac{g^{q}\left(g^{q}\right)}{A(}} \leq\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}
$$

Using the inequality (18) for $\nu=\frac{1}{q}, a=\frac{f^{p}}{A\left(f^{p}\right)}, b=\frac{g^{q}}{A\left(g^{q}\right)}$ and $L=\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}$, we get

$$
\begin{equation*}
\frac{1}{p} \frac{f^{p}}{A\left(f^{p}\right)}+\frac{1}{q} \frac{g^{q}}{A\left(g^{q}\right)} \leq S\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right) \frac{f g}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}} \tag{21}
\end{equation*}
$$

If we take the functional A in (21) we get

$$
1=\frac{1}{p} \frac{A\left(f^{p}\right)}{A\left(f^{p}\right)}+\frac{1}{q} \frac{A\left(g^{q}\right)}{A\left(g^{q}\right)} \leq S\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right) \frac{A(f g)}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}},
$$

which is equivalent with the desired result (20).
The following reverse of Cauchy-Bunyakovsky-Schwarz inequality for isotonic functionals holds:

Corollary 3.2. Let $A: L \rightarrow \mathbb{R}$ be a normalised isotonic functional, $f, g: E \rightarrow \mathbb{R}$ such that $f g, f^{2}, g^{2} \in L$ and the condition (19) is valid, then

$$
\begin{equation*}
\left[A\left(f^{2}\right)\right]^{1 / 2}\left[A\left(g^{2}\right)\right]^{1 / 2} \leq S\left(\left(\frac{M_{1}}{m_{1}}\right)^{2}\left(\frac{M_{2}}{m_{2}}\right)^{2}\right) A(f g) \tag{22}
\end{equation*}
$$

Further, observe that if $a, b>0$ and

$$
\begin{equation*}
0<l^{-1} \leq \frac{a}{b} \leq L<\infty \tag{23}
\end{equation*}
$$

for some $L, l>0$ with $L l>1$, then

$$
S\left(\frac{a}{b}\right) \leq \max \left\{S\left(l^{-1}\right), S(L)\right\}=\max \{S(l), S(L)\}
$$

and by (2) we have

$$
\begin{equation*}
(1-\nu) a+\nu b \leq \max \{S(l), S(L)\} a^{1-\nu} b^{\nu} \tag{24}
\end{equation*}
$$

for every $\nu \in[0,1]$.
Theorem 3.3. Let $A, B: L \rightarrow \mathbb{R}$ be two normalised isotonic functionals and p, $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. If $f, g, u, v: E \rightarrow \mathbb{R}$ are such that $u, v \geq 0, u, v, u f, v g$, $u f^{p}, v g^{q} \in L$ and the conditions (19) hold, then

$$
\begin{align*}
A(u f) B(v g) & \leq \frac{1}{p} A\left(u f^{p}\right) B(v)+\frac{1}{q} A(u) B\left(v g^{q}\right) \tag{25}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} A(u f) B(v g) .
\end{align*}
$$

In particular,

$$
\begin{align*}
A(u f) A(v g) & \leq \frac{1}{p} A\left(u f^{p}\right) A(v)+\frac{1}{q} A(u) A\left(v g^{q}\right) \tag{26}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} A(u f) A(v g) .
\end{align*}
$$

Proof. Observe that, by (19) we have

$$
\frac{m_{1}^{p}}{M_{2}^{q}} \leq \frac{f^{p}(x)}{g^{q}(y)} \leq \frac{M_{1}^{p}}{m_{2}^{q}}
$$

for any $x, y \in E$.
Now, if we write the inequality (24) for $l=\frac{M_{2}^{q}}{m_{1}^{p}}, L=\frac{M_{1}^{p}}{m_{2}^{4}}, a=f^{p}(x), b=g^{q}(y)$ and $\nu=\frac{1}{q}$, and use Young's inequality, then we get

$$
\begin{equation*}
f(x) g(y) \leq \frac{1}{p} f^{p}(x)+\frac{1}{q} g^{q}(y) \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} f(x) g(y) \tag{27}
\end{equation*}
$$

for any $x, y \in E$.

If we multiply (27) by $u(x) v(y) \geq 0$ we get

$$
\begin{align*}
v(y) g(y) f u & \leq \frac{1}{p} v(y) f^{p} u+\frac{1}{q} g^{q}(y) v(y) u \tag{28}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} v(y) g(y) f u
\end{align*}
$$

in the order of L, where $y \in E$.
If we take the functional A in (28), then we get

$$
\begin{align*}
v g A(f u) & \leq \frac{1}{p} A\left(f^{p} u\right) v+\frac{1}{q} A(u) g^{q} v \tag{29}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} A(f u) v g
\end{align*}
$$

in the order of L.
Finally, if we take the functional B in (29) then we get the desired result (25).
Corollary 3.4. Let $A: L \rightarrow \mathbb{R}$ be a normalised isotonic functionals and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Let $f, g: E \rightarrow \mathbb{R}$ be such that the conditions (19) hold.
(i) If $f, g, f^{2}, g^{2}, f^{p+1}, g^{q+1} \in L$, then

$$
\begin{align*}
A\left(f^{2}\right) A\left(g^{2}\right) & \leq \frac{1}{p} A\left(f^{p+1}\right) A(g)+\frac{1}{q} A(f) A\left(g^{q+1}\right) \tag{30}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} A\left(f^{2}\right) A\left(g^{2}\right) .
\end{align*}
$$

(ii) If $f, g, f g, g f^{p}, f g^{q} \in L$, then

$$
\begin{align*}
A^{2}(f g) & \leq \frac{1}{p} A\left(g f^{p}\right) A(f)+\frac{1}{q} A(g) A\left(f g^{q}\right) \tag{31}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} A^{2}(f g) .
\end{align*}
$$

The following result also holds:
Corollary 3.5. Let $A: L \rightarrow \mathbb{R}$ be a normalised isotonic functionals and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Let $\ell, h: E \rightarrow \mathbb{R}$, with $\ell \geq 0, h>0$ be such that the following condition holds

$$
\begin{equation*}
0<m \leq \frac{\ell}{h} \leq M<\infty \tag{32}
\end{equation*}
$$

If $h^{2}, h \ell, h^{2-p} \ell^{p}, h^{2-q} \ell^{q} \in L$, then we have

$$
\begin{align*}
A^{2}(h \ell) & \leq\left[\frac{1}{p} A\left(h^{2-p} \ell^{p}\right)+\frac{1}{q} A\left(h^{2-q} \ell^{q}\right)\right] A\left(h^{2}\right) \tag{33}\\
& \leq \max \left\{S\left(\frac{M^{q}}{m^{p}}\right), S\left(\frac{M^{p}}{m^{q}}\right)\right\} A^{2}(h \ell) .
\end{align*}
$$

Proof. Follows by Theorem 3.3 for $f=g=\frac{\ell}{h}, M_{1}=M_{2}=M, m_{1}=m_{2}=m$, and $u=v=h^{2}$.

We observe that for $p=q=2$ we recapture from (33) the inequality (12).

4. Applications for Integrals

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω, a σ-algebra \mathcal{A} of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$. For a μ-measurable function $w: \Omega \rightarrow \mathbb{R}$, with $w(x) \geq 0$ for μ-a.e. (almost every) $x \in \Omega$ and $p \geq 1$ consider the Lebesgue space

$$
L_{w}^{p}(\Omega, \mu):=\left\{f: \Omega \rightarrow \mathbb{R}, f \text { is } \mu \text {-measurable and } \int_{\Omega}|f(x)|^{p} w(x) d \mu(x)<\infty\right\} .
$$

For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w d \mu$ instead of $\int_{\Omega} w(x) d \mu(x)$. The same for other integrals involved below. We assume that $\int_{\Omega} w d \mu=1$.

Let f, g be μ-measurable functions with the property that there exists the constants $M, m>0$ such that

$$
0<m \leq \frac{f}{g} \leq M<\infty \mu \text {-almost everywhere (a.e.) on } \Omega \text {. }
$$

If $f^{2}, g^{2} \in L_{w}(\Omega, \mu)$, then by (13) we have

$$
\begin{align*}
& \int_{\Omega} w f^{2(1-s)} g^{2 s} d \mu \int_{\Omega} w f^{2 s} g^{2(1-s)} d \mu \tag{34}\\
& \leq \int_{\Omega} w f^{2} d \mu \int_{\Omega} w g^{2} d \mu \\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) \int_{\Omega} w f^{2(1-s)} g^{2 s} d \mu \int_{\Omega} w f^{2 s} g^{2(1-s)} d \mu
\end{align*}
$$

for any $s \in[0,1]$ and, in particular,

$$
\begin{equation*}
\left(\int_{\Omega} w f g d \mu\right)^{2} \leq \int_{\Omega} w f^{2} d \mu \int_{\Omega} w g^{2} d \mu \leq S\left(\left(\frac{M}{m}\right)^{2}\right)\left(\int_{\Omega} w f g d \mu\right)^{2} \tag{35}
\end{equation*}
$$

From (33) we also have

$$
\begin{align*}
\left(\int_{\Omega} w f g d \mu\right)^{2} & \leq\left[\frac{1}{p} \int_{\Omega} w g^{2-p} f^{p} d \mu+\frac{1}{q} \int_{\Omega} w g^{2-q} f^{q} d \mu\right] \int_{\Omega} w g^{2} d \mu \tag{36}\\
& \leq \max \left\{S\left(\frac{M^{q}}{m^{p}}\right), S\left(\frac{M^{p}}{m^{q}}\right)\right\}\left(\int_{\Omega} w f g d \mu\right)^{2}
\end{align*}
$$

Let f, g be μ-measurable functions with the property that there exists the constants $m_{1}, M_{1}, m_{2}, M_{2}$ such that

$$
\begin{equation*}
0<m_{1} \leq f \leq M_{1}<\infty, 0<m_{2} \leq g \leq M_{2}<\infty \mu \text {-a.e. on } \Omega \text {. } \tag{37}
\end{equation*}
$$

Let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by (20) we have the following reverse of Hölder's inequality

$$
\begin{equation*}
\left(\int_{\Omega} w f^{p} d \mu\right)^{1 / p}\left(\int_{\Omega} w g^{q} d \mu\right)^{1 / q} \leq S\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right) \int_{\Omega} w f g d \mu \tag{38}
\end{equation*}
$$

and, in particular, the reverse of Cauchy-Bunyakovsky-Schwarz inequality

$$
\begin{equation*}
\left(\int_{\Omega} w f^{2} d \mu\right)^{1 / 2}\left(\int_{\Omega} w g^{2} d \mu\right)^{1 / 2} \leq S\left(\left(\frac{M_{1}}{m_{1}} \frac{M_{2}}{m_{2}}\right)^{2}\right) \int_{\Omega} w f g d \mu \tag{39}
\end{equation*}
$$

From (30) and (31) we also have

$$
\begin{align*}
\int_{\Omega} w f^{2} d \mu \int_{\Omega} w g^{2} d \mu & \leq \frac{1}{p} \int_{\Omega} w f^{p+1} d \mu \int_{\Omega} w g d \mu+\frac{1}{q} \int_{\Omega} w f d \mu \int_{\Omega} w g^{q+1} d \mu \tag{40}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} \int_{\Omega} w f^{2} d \mu \int_{\Omega} w g^{2} d \mu
\end{align*}
$$

and

$$
\begin{align*}
\left(\int_{\Omega} w f g d \mu\right)^{2} & \leq \frac{1}{p} \int_{\Omega} w g f^{p} d \mu \int_{\Omega} w f d \mu+\frac{1}{q} \int_{\Omega} w g d \mu \int_{\Omega} w f g^{q} d \mu \tag{41}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\}\left(\int_{\Omega} w f g d \mu\right)^{2}
\end{align*}
$$

5. Applications for Real Numbers

We consider the n-tuples of positive numbers $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right)$ and the probability distribution $p=\left(p_{1}, \ldots, p_{n}\right)$, i.e. $p_{i} \geq 0$ for any $i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$.
If there exist the constants $m, M>0$ such that

$$
0<m \leq \frac{a_{i}}{b_{i}} \leq M<\infty \text { for any } i \in\{1, \ldots, n\}
$$

then by (34) and (35) for the counting discrete measure, we have

$$
\begin{align*}
\sum_{i=1}^{n} p_{i} a_{i}^{2(1-s)} b_{i}^{2 s} \sum_{i=1}^{n} p_{i} a_{i}^{2 s} b_{i}^{2(1-s)} & \leq \sum_{i=1}^{n} p_{i} a_{i}^{2} \sum_{i=1}^{n} p_{i} b_{i}^{2} \tag{42}\\
& \leq S\left(\left(\frac{M}{m}\right)^{2}\right) \sum_{i=1}^{n} p_{i} a_{i}^{2(1-s)} b_{i}^{2 s} \sum_{i=1}^{n} p_{i} a_{i}^{2 s} b_{i}^{2(1-s)}
\end{align*}
$$

for any $s \in[0,1]$ and, in particular,

$$
\begin{equation*}
\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)^{2} \leq \sum_{i=1}^{n} p_{i} a_{i}^{2} \sum_{i=1}^{n} p_{i} b_{i}^{2} \leq S\left(\left(\frac{M}{m}\right)^{2}\right)\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)^{2} \tag{43}
\end{equation*}
$$

From (36) we also have

$$
\begin{align*}
\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)^{2} & \leq\left[\frac{1}{p} \sum_{i=1}^{n} p_{i} b_{i}^{2-p} a_{i}^{p}+\frac{1}{q} \sum_{i=1}^{n} p_{i} b_{i}^{2-q} a_{i}^{q}\right] \sum_{i=1}^{n} p_{i} b_{i}^{2} \tag{44}\\
& \leq \max \left\{S\left(\frac{M^{q}}{m^{p}}\right), S\left(\frac{M^{p}}{m^{q}}\right)\right\}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)^{2}
\end{align*}
$$

If there exists the constants $m_{1}, M_{1}, m_{2}, M_{2}$ such that

$$
\begin{equation*}
0<m_{1} \leq a_{i} \leq M_{1}<\infty, 0<m_{2} \leq b_{i} \leq M_{2}<\infty \text { for any } i \in\{1, \ldots, n\} \tag{45}
\end{equation*}
$$

and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by (38) we have the following reverse of Hölder's discrete inequality

$$
\begin{equation*}
\left(\sum_{i=1}^{n} p_{i} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} p_{i} b_{i}^{q}\right)^{1 / q} \leq S\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right) \sum_{i=1}^{n} p_{i} a_{i} b_{i} \tag{46}
\end{equation*}
$$

and, in particular, the reverse of Cauchy-Bunyakovsky-Schwarz inequality

$$
\begin{equation*}
\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} p_{i} b_{i}^{2}\right)^{1 / 2} \leq S\left(\left(\frac{M_{1}}{m_{1}} \frac{M_{2}}{m_{2}}\right)^{2}\right) \sum_{i=1}^{n} p_{i} a_{i} b_{i} . \tag{47}
\end{equation*}
$$

From (40) and (41) we also have

$$
\begin{align*}
\sum_{i=1}^{n} p_{i} a_{i}^{2} \sum_{i=1}^{n} p_{i} b_{i}^{2} & \leq \frac{1}{p} \sum_{i=1}^{n} p_{i} a_{i}^{p+1} \sum_{i=1}^{n} p_{i} b_{i}+\frac{1}{q} \sum_{i=1}^{n} p_{i} a_{i} \sum_{i=1}^{n} p_{i} b_{i}^{q+1} \tag{48}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\} \sum_{i=1}^{n} p_{i} a_{i}^{2} \sum_{i=1}^{n} p_{i} b_{i}^{2}
\end{align*}
$$

and

$$
\begin{align*}
\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)^{2} & \leq \frac{1}{p} \sum_{i=1}^{n} p_{i} b_{i} a_{i}^{p} \sum_{i=1}^{n} p_{i} a_{i}+\frac{1}{q} \sum_{i=1}^{n} p_{i} b_{i} \sum_{i=1}^{n} p_{i} a_{i} b_{i}^{q} \tag{49}\\
& \leq \max \left\{S\left(\frac{M_{2}^{q}}{m_{1}^{p}}\right), S\left(\frac{M_{1}^{p}}{m_{2}^{q}}\right)\right\}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)^{2}
\end{align*}
$$

References

[1] D. Andrica and C. Badea, Grüss' inequality for positive linear functionals, Periodica Math. Hung., 19 (1998), 155-167.
[2] P. R. Beesack and J. E. Pečarić, On Jessen's inequality for convex functions, J. Math. Anal. Appl., 110 (1985), 536-552.
[3] D. K. Callebaut, Generalization of Cauchy-Schwarz inequality, J. Math. Anal. Appl. 12 (1965), 491-494.
[4] S. S. Dragomir, A refinement of Hadamard's inequality for isotonic linear functionals, Tamkang J. Math (Taiwan), 24 (1992), 101-106.
[5] S. S. Dragomir, On a reverse of Jessen's inequality for isotonic linear functionals, J. Ineq. Pure छ Appl. Math., 2(3)(2001), Article 36, [On line: http://www.emis.de/journals/JIPAM/article152.html?sid=152].
[6] S. S. Dragomir, On the Jessen's inequality for isotonic linear functionals, Nonlinear Analysis Forum, 7(2)(2002), 139-151.
[7] S. S. Dragomir, On the Lupaş-Beesack-Pečarić inequality for isotonic linear functionals, Nonlinear Funct. Anal. \& Appl., 7(2)(2002), 285-298.
[8] S. S. Dragomir and N. M. Ionescu, On some inequalities for convex-dominated functions, L'Anal. Num. Théor. L'Approx., 19 (1) (1990), 21-27.
[9] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [On line: http://rgmia.org/monographs/hermite_hadamard.html].
[10] S. S. Dragomir, C. E. M. Pearce and J. E. Pečarić, On Jessen's and related inequalities for isotonic sublinear functionals, Acta. Sci. Math. (Szeged), 61 (1995), 373-382.
[11] A. Lupas, A generalisation of Hadamard's inequalities for convex functions, Univ. Beograd. Elek. Fak., 577-579 (1976), 115-121.
[12] J .E. Pečarić, On Jessen's inequality for convex functions (III), J. Math. Anal. Appl., 156 (1991), 231-239.
[13] J. E. Pečarić and P. R. Beesack, On Jessen's inequality for convex functions (II), J. Math. Anal. Appl., 156 (1991), 231-239.
[14] J. E. Pečarić and S. S. Dragomir, A generalisation of Hadamard's inequality for isotonic linear functionals, Radovi Mat. (Sarjevo), 7 (1991), 103-107.
[15] J. E. Pečarić and I. Raşa, On Jessen's inequality, Acta. Sci. Math (Szeged), 56 (1992), 305-309.
[16] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), pp. 91-98.
[17] G. Toader and S. S. Dragomir, Refinement of Jessen's inequality, Demonstratio Mathematica, 28 (1995), 329-334.
[18] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.
S. S. Dragomir: Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
S. S. Dragomir: School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 2010 Mathematics Subject Classification. 26D15, 26D10.
 Key words and phrases. Isotonic Functionals, Hölder's inequality, Schwarz's inequality, Callebaut's inequality, Integral inequalities, Discrete inequalities.

