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Abstract Dual characterizations of the containment of a convex set with qua-
siconvex inequality constraints are investigated. A new Lagrange-type duality
and a new closed cone constraint qualification are described, and it is shown
that this constraint qualification is the weakest constraint qualification for the
duality.
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1 Introduction

Set containment problems consist of characterizing the inclusion A ⊂ B, where
A = {x ∈ X | ∀i ∈ I, fi(x) ≤ 0} and B = {x ∈ X | ∀j ∈ J, hj(x) ≤ 0}. Moti-
vated by general non-polyhedral knowledge-based data classification, a num-
ber of researchers have studied the set containment characterization; see [1–5].
Jeyakumar [3] established the set containment characterization for convex pro-
gramming, under the convexity of fi, i ∈ I and the linearity (or the concavity)
of hj , j ∈ J , using the epigraph of the Fenchel conjugate of a convex func-
tion. Suzuki and Kuroiwa [5] established the set containment characterization
using the H-quasiconjugate and the R-quasiconjugate, when each function is
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quasiconvex. Although the class of quasiconvex functions is wider than that
of convex functions, the convex characterization of Jeyakumar [3] cannot be
shown by the quasiconvex characterization of Suzuki and Kuroiwa [5].

Recently, constraint qualifications have been investigated using set con-
tainment characterizations. In convex optimization, a constraint qualification
is an essential ingredient of the elegant and powerful duality theory. The best-
known constraint qualifications are the interior point conditions, also known as
the Slater-type constraint qualifications. Often, however, such constraint qual-
ifications are not satisfied for problems that arise in applications. The lack of
a constraint qualification can cause theoretical and numerical difficulties in
applications. For convex programs, Jeyakumar, Dinh, and Lee [6] developed
the closed cone constraint qualification, involving epigraphs and extending the
Slater-type conditions. Constraint qualifications involving epigraphs have been
used extensively in various studies; see [7–11]. Such constraint qualifications
concern Jeyakumar’s set containment characterization.

In the present paper, we consider set containment characterizations and the
new closed cone constraint qualification for quasiconvex programming. Fur-
thermore, we show a duality theorem for quasiconvex programming with the
new constraint qualification. We define a notion of generator for quasiconvex
functions through Penot and Volle’s characterization in [12], and investigate
the set containment characterization and the constraint qualification.

The remainder of the present paper is organized as follows. In Section
2, we introduce Penot and Volle’s characterization and define a generator of
quasiconvex functions. Furthermore, we introduce Jeyakumar’s set contain-
ment characterizations and Lagrange duality theorem for convex program-
ming. Section 3 introduces set containment characterizations for quasiconvex
programming, from which we define a new closed cone constraint qualification
in Section 4.

2 Preliminaries: Generator of Quasiconvex Function

Let X be a locally convex Hausdorff topological vector space, let X∗ be the
continuous dual space of X , and let 〈x∗, x〉 denote the value of a functional
x∗ ∈ X∗ at x ∈ X . Given a set S ⊂ X∗, we denote the weak∗-closure, the
convex hull, and the conical hull generated by S, by clS, convS, and coneS,
respectively. Throughout the paper, let f be a function from X to R, where
R := [−∞,∞]. Here, f is said to be proper iff for all x ∈ X , f(x) > −∞
and there exists x0 ∈ X such that f(x0) ∈ R. We denote the domain of
f by dom f , that is, dom f := {x ∈ X | f(x) ∈ R}. The epigraph of f is
epi f := {(x, r) ∈ X × R | x ∈ dom f, f(x) ≤ r}, and f is said to be convex
iff epi f is convex. The Fenchel conjugate of f , f∗ : X∗ → R, is defined as
f∗(u) := supx∈dom f{〈u, x〉−f(x)}. Remember that f is said to be quasiconvex
iff for all x1, x2 ∈ X and α ∈]0, 1[,

f((1 − α)x1 + αx2) ≤ max{f(x1), f(x2)}.
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Define level sets of f with respect to a binary relation ⋄ on R as

lev(f, ⋄, α) := {x ∈ X | f(x) ⋄ α}

for any α ∈ R. Then, f is quasiconvex iff for any α ∈ R, lev(f,≤, α) is a convex
set, or equivalently, for any α ∈ R, lev(f,<, α) is a convex set. Any convex
function is quasiconvex, but the opposite is not true.

A function f is said to be quasiaffine iff f is quasiconvex and quasiconcave.
Furthermore, f is lsc quasiaffine iff there exist k ∈ Q and w ∈ X∗ such that
f = k ◦ w, where Q := {k : R → R | k is lsc and non-decreasing}; see [12].

We introduce the following characterization theorem of the quasiconvex
function.

Theorem 2.1 [12] Let f be a function from X to R. Then, the following
statements are equivalent:

(i) f is lsc quasiconvex,
(ii) there exist a set I, {ki} ⊂ Q and {wi} ⊂ X∗, such that f = supi∈I ki ◦wi.

Theorem 2.1 indicates that a lsc quasiconvex function consists of a supre-
mum of some family of lsc quasiaffine functions. We define the notion of gen-
erator of quasiconvex functions.

Definition 2.1 Let f be a function from X to R. A subset {(ki, wi) | i ∈ I}
of Q×X∗ is said to be a generator of f iff f = supi∈I ki ◦ wi.

By using Theorem 2.1, we can prove that all quasiconvex functions have at
least one generator. For example, when f ∈ Γ0(X), the set of all proper lsc
convex functions from X to R, Bf := {(kv, v) | v ∈ dom f∗} ⊂ Q×X∗, where
kv(t) = t− f∗(v), is a generator of f . Actually, for all x ∈ X ,

f(x) = f∗∗(x) = sup{〈v, x〉 − f∗(v) | v ∈ dom f∗} = sup
v∈dom f∗

kv(〈v, x〉).

We call the generator Bf ”the basic generator” of the convex function f .
Moreover, Penot and Volle [12] studied generalized concepts of the inverse

of non-decreasing functions. Since now, the set of non-decreasing functions on
R is denoted by G; that is, G := {k : R → R | k is non-decreasing}. A function
l : R → R is said to be the hypo-epi-inverse of k ∈ G iff for any r, s in R,
s ≤ l(r) ⇐⇒ k(s) ≤ r; it is known that the hypo-epi-inverse of k is uniquely
defined. We will denote the hypo-epi-inverse of k by k−1, because, if k has an
inverse function, then the inverse function and the hypo-epi-inverse of k are
the same. Furthermore, for any k ∈ Q, we can calculate k−1, as follows:

k−1(r) = inf{t ∈ R | r < k(t)} = sup{s ∈ R | k(s) ≤ r}.

In [3], the following set containment characterizations were proved.

Theorem 2.2 [3] Let I be an arbitrary set, and, for each i ∈ I, let gi be a
convex function from R

n to R. In addition, let {x ∈ R
n | ∀i ∈ I, gi(x) ≤ 0} be

a non-empty set, u ∈ R
n, α ∈ R. Then, (i) and (ii) given below are equivalent:
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(i) {x ∈ R
n | ∀i ∈ I, gi(x) ≤ 0} ⊂ {x ∈ R

n | 〈u, x〉 ≤ α},

(ii) (u, α) ∈ cl cone conv
⋃

i∈I

epi g∗i .

Theorem 2.3 [3] Let I be an arbitrary set, and, for each i ∈ I, let gi be a
convex function from R

n to R, {x ∈ R
n | ∀i ∈ I, gi(x) ≤ 0} 6= ∅. In addition,

let h be a convex function from R
n to R. Then, (i) and (ii) given below are

equivalent:

(i) {x ∈ R
n | ∀i ∈ I, gi(x) ≤ 0} ⊂ {x ∈ R

n | h(x) ≥ 0},

(ii) (0, 0) ∈ epih∗ + cl cone conv
⋃

i∈I

epi g∗i .

In [10], Farkas-Minkowski (FM) was investigated. Let I be an index set,
for each i ∈ I, let gi ∈ Γ0(X). The convex system {gi(x) ≤ 0 | i ∈ I} is said
to be FM iff the characteristic cone

cone conv
⋃

i∈I

epi g∗i

is w∗-closed. Furthermore, the following Lagrange duality theorem was proved.

Theorem 2.4 [10] Let I be an index set, for each i ∈ I, let gi ∈ Γ0(X).
Assume that A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0} 6= ∅. Then, the following
statements are equivalent:

(i) {gi(x) ≤ 0 | i ∈ I} is FM,
(ii) for all v ∈ X∗, infx∈A 〈v, x〉 = max

λ∈R
(I)
+

infx∈X{〈v, x〉+
∑

i∈I λigi(x)},

(iii) for all h ∈ Γ0(X) with domh∩A 6= ∅, where epih∗ +epi δ∗A is w∗-closed,

inf
x∈A

h(x) = max
λ∈R

(I)
+

inf
x∈X

{

h(x) +
∑

i∈I

λigi(x)
}

,

where, R
(I)
+ := {λ ∈ R

I | ∀i ∈ I, λi ≥ 0, {i ∈ I | λi 6= 0} is finite}.

3 Set Containment Characterization

In this section, we show two set containment characterizations for quasiconvex
constraints. First, we present a characterization of a containment of a convex
set, defined by a quasiconvex constraint, in a closed half-space.

Theorem 3.1 Let f be a lsc quasiconvex function from X to R with a gen-
erator {(ki, wi) | i ∈ I} ⊂ Q×X∗, u ∈ X∗, and α, β ∈ R. Assume that there
exists i0 ∈ I such that k−1

i0
(β) ∈ R and {x ∈ X | f(x) ≤ β} 6= ∅. Then, (i) and

(ii) given below are equivalent:

(i) {x ∈ X | f(x) ≤ β} ⊂ {x ∈ X | 〈u, x〉 ≤ α},

(ii) (u, α) ∈ cl cone conv
⋃

i∈I

{(wi, δ) ∈ X∗ × R | k−1
i (β) ≤ δ}.
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Proof Put gi : X → R, gi(x) = wi(x) − k−1
i (β), then

A = {x ∈ X | ∀i ∈ I, ki ◦wi(x) ≤ β} = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0}.

Since gi is continuous and linear, we can show the following equation by using
Theorem 2.2:

epi δ∗A = cl cone conv
⋃

i∈I

epi g∗i .

Clearly epi g∗i = {wi} × [k−1
i (β),∞[; this completes the proof. ⊓⊔

A generator of the quasiconvex function, obtained in Theorem 2.1, is not
unique, and any lsc quasiconvex function has infinite generators. However, the
set in condition (ii) of Theorem 3.1 does not depend on the generator of the
function f . When subsets {(ki, wi) | i ∈ I} and {(lj, uj) | j ∈ J} of Q × X∗

are generators of f , then, by using Theorem 3.1, the following three conditions
can be proved to be equivalent:

(i) {x ∈ X | f(x) ≤ β} ⊂ {x ∈ X | 〈u, x〉 ≤ α},

(ii) (u, α) ∈ cl cone conv
⋃

i∈I

{(wi, δ) ∈ X∗ × R | k−1
i (β) ≤ δ},

(iii) (u, α) ∈ cl cone conv
⋃

j∈J

{(uj, δ) ∈ X∗ × R | l−1
j (β) ≤ δ}.

Moreover, the set in the above condition (ii) is equal to epi δ∗A, that is

epi δ∗A = cl cone conv
⋃

i∈I

{(wi, δ) ∈ X∗ × R | k−1
i (β) ≤ δ},

where A = lev(f,≤, β), and δA is the indicator function of A. This equation
is very important to define the newly proposed CCCQ in the way described
in [10].

In the present paper, we consider the quasiconvex set containment char-
acterization with singular constraint {x ∈ X | f(x) ≤ β}. When we consider
multiple constraints, that is, {x ∈ X | ∀i ∈ I, gi(x) ≤ β}, we can obtain
the singular constraint {x ∈ X | supi∈I gi ≤ β}, in which the generator of
supi∈I gi is the union of generators of gi.

Next, we present a characterization of the containment of a convex set,
defined by a quasiconvex constraint, in a reverse convex set, as defined by a
convex constraint.

Theorem 3.2 Let f be a lsc quasiconvex function from X to R with a gen-
erator {(ki, wi) | i ∈ I} ⊂ Q×X∗, and let g ∈ Γ0(X). In addition, let β ∈ R.
Assume that A = {x ∈ X | f(x) ≤ β} 6= ∅, dom g ∩ A 6= ∅, epi g∗ + epi δ∗A is
w∗-closed and that there exists i0 ∈ I such that k−1

i0
(β) ∈ R. Then, (i) and (ii)

are equivalent:

(i) {x ∈ X | f(x) ≤ β} ⊂ {x ∈ X | g(x) ≥ 0},

(ii) (0, 0) ∈ epi g∗ + cl cone conv
⋃

i∈I

{(wi, δ) ∈ X∗ × R | k−1
i (β) ≤ δ}.
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Proof Assume that the condition (ii) holds. Based on the above assumption
and Theorem 3.1, we can show that

(0, 0) ∈ epi g∗ + epi δ∗A = epi (g + δA)
∗;

see [13]. This shows infx∈A g(x) ≥ 0, that is, condition (i) holds. The inverse
implication is similar. ⊓⊔

4 Closed Cone Constraint Qualification

In optimization, research on constraint qualification is very important, and, in
convex optimization, closed cone constraint qualification has been investigated
extensively; see [6,7,10,11]. In the present paper, we investigate a new closed
cone constraint qualification for quasiconvex programming.

Definition 4.1 Let f be a lsc quasiconvex function from X to R with gener-
ator {(ki, wi) | i ∈ I} ⊂ Q ×X∗, and A = {x ∈ X | f(x) ≤ 0} 6= ∅. Assume
that there exists i0 ∈ I such that k−1

i0
(0) ∈ R. Then, the quasiconvex system

{f(x) ≤ 0} satisfies the closed cone constraint qualification for quasiconvex
programming (the Q-CCCQ) with respect to {(ki, wi) | i ∈ I} iff

cone conv
⋃

i∈I

{(wi, δ) ∈ X∗ × R | k−1
i (0) ≤ δ}

is w∗-closed.

As a consequence of Theorem 3.1, {f(x) ≤ 0} satisfies the Q-CCCQ with
respect to {(ki, wi) | i ∈ I} iff the alternative form of the Q-CCCQ, that is

epi δ∗A ⊂ cone conv
⋃

i∈I

{(wi, δ) ∈ X∗ × R | k−1
i (0) ≤ δ},

holds.

Theorem 4.1 Let f be a lsc quasiconvex function from X to R with a gen-
erator {(ki, wi) | i ∈ I} ⊂ Q ×X∗. Assume that A = {x ∈ X | f(x) ≤ 0} 6= ∅.
Then, the following statements are equivalent:

(i) {f(x) ≤ 0} satisfies the Q-CCCQ w.r.t. {(ki, wi) | i ∈ I},
(ii) for all v ∈ X∗,

inf
x∈A

〈v, x〉 = max
λ∈R

(I)
+

inf
x∈Rn

{

〈v, x〉+
∑

i∈I

λi(〈wi, x〉 − k−1
i (0))

}

,

(iii) for all h ∈ Γ0(X) with domh ∩A 6= ∅ and epih∗ + epi δ∗A is w∗-closed,

inf
x∈A

h(x) = max
λ∈R

(I)
+

inf
x∈Rn

{

h(x) +
∑

i∈I

λi(〈wi, x〉 − k−1
i (0))

}

.



On Set Containment Characterization and CQ for Quasiconvex Programming 7

Proof Put gi : X → R, gi(x) = wi(x) − k−1
i (0); then

A = {x ∈ X | ∀i ∈ I, ki ◦ wi(x) ≤ 0} = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0},

and we can check that (i) is equivalent to “{gi(x) ≤ 0} is FM”. Since gi is
continuous and linear, then, by using Theorem 2.4, we can prove that (i), (ii)
and (iii) are equivalent. ⊓⊔

In the rest of this section, we compare the Q-CCCQ with FM by Venn
diagram. At first, we show an example where FM is satisfied.

Example 4.1 Let X = R and f(x) = |x|. Then, we can check that f is convex
and f∗ is as follows:

f∗(v) =

{

0, if v ∈ [−1, 1],
∞, if v /∈ [−1, 1].

Furthermore,

cone conv epi f∗ = {(x1, x2) ∈ R
2 | x2 ≥ 0},

that is, FM is satisfied.

Next, we show an example of convex programming where Q-CCCQ is sat-
isfied, but FM is not.

Example 4.2 Let X be a normed space, f(x) = 1
2‖x‖

2. Then, we can see that
f is convex, f∗(v) = 1

2‖v‖
2, and

cone conv epi f∗ = (X∗×]0,∞[) ∪ {(0, 0)},

that is, FM is not satisfied. However, we can choose a generator, which satisfies
the Q-CCCQ.

Let S∗ = {w ∈ X∗ | ‖w‖ = 1}, and k ∈ Q as follows:

k(t) =

{

1
2 t

2, if t > 0,
0, if t ≤ 0.

Then, f = supw∈S∗

k ◦ w, k−1(0) = 0, and the equality

cone conv
⋃

w∈S∗

{(w, δ) | k−1(0) ≤ δ} = X∗ × [0,∞[

holds, that is, {f(x) ≤ 0} satisfies the Q-CCCQ w.r.t. {(k, w) | w ∈ S∗}.

Example 4.2 indicates that the Q-CCCQ and a representation of constraint
functions by using the notion of generator are useful to convex programming.
We give the following example which shows that the Q-CCCQ is satisfied in
a quasiconvex, but not convex, problem.
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Example 4.3 Let X = R
n, a ∈ R

n, and f(x) =
√

‖x− a‖ − 2. Then, f is
quasiconvex with the following generator: let S∗ = {w ∈ R

n | ‖w‖ = 1},
kw ∈ Q as follows:

kw(t) =

{√

t− 〈w, a〉 − 2, if t > 〈w, a〉 ,
0, if t ≤ 〈w, a〉 .

Then, f = supw∈S∗

kw ◦ w, k−1
w (0) = 〈w, a〉, and the equality

epi δ∗A = cone conv
⋃

w∈S∗

{(w, δ) | k−1
w (0) ≤ δ}

holds, that is, {f(x) ≤ 0} satisfies the Q-CCCQ w.r.t. {(kw, w) | w ∈ S∗}.

We show the following example where Q-CCCQ is not satisfied in convex
programming.

Example 4.4 Let X = R
2, I =]0, 1], wi = (−i, i − 1), ki be a function as

follows:

ki(t) =

{

it, if t > 0,
0, if t ≤ 0,

and f = supi∈I ki ◦ wi. It is clear that {f(x) ≤ 0} is not satisfies Q-CCCQ
w.r.t. {(ki, wi) | i ∈ I}. Even if G = {(k, w) | k ∈ Q,w ∈ R

2, k ◦ w ≤ f}, it
is the biggest generator of f , then f does not satisfy the Q-CCCQ w.r.t. G.
Indeed, epiσA = {(x, α) | x ∈ −R

2
+, α ≥ 0}, and

((0,−1), 0) /∈ cone conv {(w, δ) | k−1(0) ≤ δ, k ◦ w ≤ f}+ {0} × [0,∞[

since if w = (0,−1) and k ◦ w ≤ f , then k ≤ 0, that is k−1(0) = ∞. Fur-
thermore, we can check that FM is not satisfied since the basic generator is
included in G.

Finally, we show the following example where Q-CCCQ is not satisfied in
quasiconvex programming.

Example 4.5 Let X = R
2, I =]0, 1], wi = (−i, i − 1), ki be a function as

follows:

ki(t) =

{

it, if t > 0,
−1, if t ≤ 0,

and f = supi∈I ki ◦ wi. Then, f is quasiconvex. We can check similarly that
Q-CCCQ w.r.t. {(ki, wi) | i ∈ I} and Q-CCCQ w.r.t. G are not satisfied.

Figure 1 summarizes the results illustrated by the examples.
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Quasiconvex

Convex

1

2

3

4

5
Q-CCCQ

FM

Fig. 1 Venn diagram of constraint qualifications

In the above diagram, we compare the Q-CCCQ with FM which is the
weakest constraint qualification for Lagrange (strong) duality theorem in con-
vex programming in order to focus on the relation between quasiconvex pro-
gramming and convex programming. We can see similar scheme in [14,15]
by Pellegrini and Moldovan. Pellegrini and Moldovan investigated constraint
qualifications and regularity conditions for Lagrange min-max duality theorem
which is similar to, but different from, our problem.

5 Concluding Remarks

In this paper, we define the generator of quasiconvex functions by the result
of Penot and Volle in [12], and investigate dual characterizations of the con-
tainment of a convex set with quasiconvex inequality constraints. We describe
a new Lagrange-type duality, and the new closed cone constraint qualifica-
tion, the Q-CCCQ, and we show that the Q-CCCQ is the weakest constraint
qualification for the new Lagrange-type duality.
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[9] Boţ, R. I., Grad, S. M., Wanka, G.: New Regularity Conditions for Strong and Total
Fenchel-Lagrange Duality in Infinite Dimensional Spaces, Nonlinear Anal. 69, 323–336
(2008)
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