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Some constraint qualifications for quasiconvex
vector-valued systems
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Abstract In this paper, we consider minimization problems with a quasiconvex
vector-valued inequality constraint. We propose two constraint qualifications, the
closed cone constraint qualification for vector-valued quasiconvex programming
(the VQ-CCCQ) and the basic constraint qualification for vector-valued quasicon-
vex programming (the VQ-BCQ). Based on previous results by Benoist, Borwein,
and Popovici (Proc. Amer. Math. Soc. 13: 1109–1113, 2002), and the authors
(J. Optim. Theory Appl. 149: 554–563, 2011 and Nonlinear Anal. 74: 1279–1285,
2011), we show that the VQ-CCCQ (resp. the VQ-BCQ) is the weakest constraint
qualification for Lagrangian-type strong (resp. min-max) duality. As consequences
of the main results, we study semi-definite quasiconvex programming problems in
our scheme, and we observe the weakest constraint qualifications for Lagrangian-
type strong and min-max dualities. Finally, we summarize the characterizations
of the weakest constraint qualifications for convex and quasiconvex programming.

Keywords quasiconvex programming · quasiaffine functions · vector-valued ·
constraint qualification

Mathematics Subject Classification (2000) 90C26 · 26B25

1 Introduction

In mathematical programming, constraint qualifications are essential elements for
duality theory. The best-known constraint qualifications are the interior point con-
ditions, also known as the Slater-type constraint qualifications. Often, however,
such constraint qualifications are not satisfied for problems that arise in applica-
tions. The lack of a constraint qualification can cause theoretical and numerical
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difficulties in applications. In convex programming, research on the weakest con-
straint qualifications for Lagrangian strong and min-max dualities has been car-
ried out in many studies. Jeyakumar, Dinh and Lee developed the closed cone con-
straint qualification (the CCCQ) involving epigraphs and extending the Slater-type
conditions in [1], and Jeyakumar [2] demonstrated that the CCCQ is the weakest
constraint qualification for Lagrangian (strong) duality (in [2], the CCCQ is called
[CQ1]). Also, Li, Ng and Pong established the basic constraint qualification (the
BCQ) as the weakest constraint qualification for the Lagrangian min-max duality
in [3]: let I be an arbitrary set, f and gi be proper lsc convex functions from X
to R, and A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0}; then x0 ∈ A is a global minimizer of f

in A if and only if there exists λ ∈ R(I)
+ such that 0 ∈ ∂f(x0) +

∑
i∈I λi∂gi(x0).

Moreover, for a vector-valued convex inequality system, Jeyakumar established
the BCQ, which is called [CQ2], for Lagrangian min-max duality as the weakest
constraint qualification (see [2]).

In recent research [4,5] on the weakest constraint qualifications for Lagrangian-
type strong and min-max dualities in quasiconvex programming, we established
constraint qualifications for real-valued quasiconvex inequality systems (the Q-
CCCQ and the Q-BCQ) and proved that these constraint qualifications were the
weakest ones for certain Lagrangian-type dualities. To define these constraint qual-
ifications, we introduced the notion of a generator of quasiconvex functions, based
on Penot and Volle’s interesting result that each lower semi-continuous quasi-
convex function consists of a supremum of some family of lower semi-continuous
quasiaffine functions [6].

In the present paper, we consider the weakest constraint qualifications for
Lagrangian-type dualities of the following minimization programming problem
with a quasiconvex vector-valued inequality constraint:

{
minimize f(x),
subject to g(x) ∈ −K,

where X and Y are Banach spaces, K is a closed convex cone in Y , f is a function
from X to R = [−∞,+∞], and g is a K-quasiconvex function from X to Y . We
propose and investigate constraint qualifications for a vector-valued quasiconvex
inequality system as generalizations of the results in [4] and [5], and show that
these qualifications are the weakest ones for certain Lagrangian-type dualities.

The remainder of the present paper is organized as follows. In Section 2, we give
some preliminaries and notation. In Section 3, we propose two constraint qualifi-
cations, the closed cone constraint qualification for vector-valued quasiconvex pro-
gramming (the VQ-CCCQ) and the basic constraint qualification for vector-valued
quasiconvex programming (the VQ-BCQ). Based on previous results by Benoist,
Borwein, and Popovici [7], and the authors [4,5], we show that the VQ-CCCQ
(resp. the VQ-BCQ) is the weakest constraint qualification for Lagrangian-type
strong (resp. min-max) duality. As consequences of the main results, in Section
4, we study semi-definite quasiconvex programming problems in our scheme, and
we observe the weakest constraint qualifications for Lagrangian-type strong and
min-max dualities. Finally, in Section 5, we summarize the characterizations of
the weakest constraint qualifications for convex and quasiconvex programming.
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2 Preliminaries

Let X be a Banach space, let X∗ be the continuous dual space of X, and let
⟨x∗, x⟩ denote the value of a functional x∗ ∈ X∗ at x ∈ X. Given a set A∗ ⊂ X∗,
we denote the w∗-closure, the convex hull and the conical hull generated by A∗,
by clA∗, coA∗ and coneA∗, respectively. The normal cone of A ⊂ X at z0 ∈ A
is denoted by NA(z0) = {x∗ ∈ X∗ | ∀y ∈ A, ⟨x∗, y − z0⟩ ≤ 0}. The indicator
function δA of A is defined by

δA(x) :=

{
0 x ∈ A,
∞ otherwise.

Throughout the present paper, let f be a function from X to R, where R =
[−∞,∞]. Here, f is said to be proper if for all x ∈ X, f(x) > −∞ and there exists
x0 ∈ X such that f(x0) ∈ R. We denote the domain of f by domf , that is, domf =
{x ∈ X | f(x) < ∞}. The epigraph of f , epif , is defined as epif = {(x, r) ∈ X×R |
f(x) ≤ r}, and f is said to be convex if epif is convex. In addition, the Fenchel
conjugate of f , f∗ : X∗ → R, is defined as f∗(u) = supx∈domf{⟨u, x⟩ − f(x)}.
Recall that f is said to be quasiconvex if for all x1, x2 ∈ X and α ∈ (0, 1),

f((1− α)x1 + αx2) ≤ max{f(x1), f(x2)}.

Define level sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, α) = {x ∈ X | f(x) ⋄ α}

for any α ∈ R. Then, f is quasiconvex if and only if for any α ∈ R, L(f,≤, α) is a
convex set, or equivalently, for any α ∈ R, L(f,<, α) is a convex set. Any convex
function is quasiconvex, but the opposite is not true.

Recall Γ0(X), the set of all proper lsc convex functions. It is well known that
a function in Γ0(X) consists of a supremum of some family of affine functions. In
the case of quasiconvex functions, a similar result was also proved by Penot and
Volle [6]. A function f is said to be quasiaffine if quasiconvex and quasiconcave. It
is important that f is lsc quasiaffine if and only if there exists k ∈ Q and w ∈ X∗

such that f = k◦w, whereQ = {k : R → R | k is lsc and non-decreasing}. By using
the notion of quasiaffine function, Penot and Volle proved that f is lsc quasiconvex
if and only if there exists {(ki, wi) | i ∈ I} ⊂ Q×X∗ such that f = supi∈I ki ◦wi.
This result indicates that a lsc quasiconvex function f consists of a supremum of
some family of lsc quasiaffine functions. Based on this result, we define a notion of
generator for quasiconvex functions in [4], that is, G = {(ki, wi) | i ∈ I} ⊂ Q×X∗

is said to be a generator of f if f = supi∈I ki ◦wi. From Penot and Volle’s result,
all lsc quasiconvex functions have at least one generator. Also, it is clear that all
proper lsc convex functions have a generator which consists of continuous affine
functions.

Moreover, we introduce a generalized notion of inverse function of k ∈ Q. The
following function k−1 is said to be the hypo-epi-inverse of k:

k−1(a) = inf{b ∈ R | a < k(b)} = sup{b ∈ R | k(b) ≤ a}.

If k has the inverse function, then the inverse and the hypo-epi-inverse of k are the
same, in detail see [6]. In this paper, we denote the hypo-epi-inverse of k by k−1.
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Also, we denote the lower left-hand Dini derivative of k ∈ Q at t by D−k(t), that

is D−k(t) = lim infα→0−
k(t+α)−k(t)

α . A function k is said to be lower left-hand
Dini differentiable if D−k(t) is finite for all t ∈ R.

Let Y be a Banach space, and K a nonempty closed convex cone of Y . By
introducing the binary relation ≤K on Y by y ≤K z if and only if z − y ∈ K,
(Y,≤K) becomes a partially ordered set. Also, (Y,≤K) is said to be directed if for
all y1, y2 ∈ Y , there exists z ∈ Y such that y1 ≤K z and y2 ≤K z. Let Y ∗ be the
continuous dual space of Y , K+ the positive polar cone of K, and extdK+ the set
of all extreme directions of K+. Recall that K+ = {y∗ ∈ Y ∗ | ∀y ∈ K, ⟨y∗, y⟩ ≥ 0}
and y∗ ∈ extdK+ if and only if y∗ ∈ K+ \ {0} and for all y∗1 , y

∗
2 ∈ K+ with

y∗ = y∗1 + y∗2 , y
∗
1 , y

∗
2 ∈ R+{y∗}. A function g is said to be K-convex if for all x1,

x2 ∈ X, and α ∈ (0, 1), (1 − α)g(x1) + αg(x2) ∈ g((1 − α)x1 + αx2) + K. It is
well known that g is K-convex if and only if y∗ ◦ g is convex for all y∗ ∈ K+.
Also, a function g is said to be K-quasiconvex if for all y ∈ Y , x1, x2 ∈ X, and
α ∈ (0, 1) with y ∈ (g(x1) +K)∩ (g(x2) +K), y ∈ g((1−α)x1 +αx2) +K. In [7],
K-quasiconvexity is characterized as follows:

Theorem 2.1 [7] Let D be a nonempty convex subset of a vector space Z, and
K be a closed convex cone in Banach space Y satisfying (Y,≤K) is directed and
K+ = cl co extdK+. For a function g from D to Y , the following conditions are
equivalent:

(i) g is K-quasiconvex,
(ii) y∗ ◦ g is quasiconvex for all y∗ ∈ extdK+.

Next we mention about previous results concerned with the weakest constraint
qualifications. In convex optimization, the closed cone constraint qualification (the
CCCQ) have been investigated extensively as the weakest one for the Lagrangian
strong duality see [1,3,8,9], and the basic constraint qualification (the BCQ) for
the Lagrangian min-max duality, see [2,3]. In quasiconvex optimization, the closed
cone constraint qualification for quasiconvex programming (the Q-CCCQ) has
been established in [4], as the weakest one for the Lagrangian-type strong duality:

Definition 2.1 [4] Let {gi | i ∈ I} be a family of lsc quasiconvex functions from
X to R, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator of gi for each i ∈ I
and T = {t = (i, j) | i ∈ I, j ∈ Ji}. Assume that A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0}
is non-empty set. Then, the quasiconvex system {gi(x) ≤ 0 | i ∈ I} satisfies the
closed cone constraint qualification for quasiconvex programming (the Q-CCCQ)
w.r.t. {(kt, wt) | t ∈ T} if

cone co
∪
t∈T

{(wt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ}+ {0} × [0,∞)

is w∗-closed.

Theorem 2.2 [4] Let f be a lsc quasiconvex function from X to R with generator
{(ki, wi) | i ∈ I} ⊂ Q ×X∗. Assume that A = {x ∈ X | f(x) ≤ 0} is non-empty
set. Then, the following statements are equivalent:

(i) {f(x) ≤ 0} satisfies the Q-CCCQ w.r.t. {(ki, wi) | i ∈ I},
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(ii) for all h ∈ Γ0(X) with domh ∩A ̸= ∅ and epih∗ + epiδ∗A is w∗-closed,

inf
x∈A

h(x) = max
λ∈R(I)

+

inf
x∈X

{
h(x) +

∑
i∈I

λi(wi(x)− k−1
i (0))

}
.

Also the basic constraint qualification for quasiconvex programming (the Q-BCQ)
has been established as the weakest one for Lagrangian-type min-max duality by
the authors, see [5]:

Definition 2.2 [5] Let {gi | i ∈ I} be a family of lsc quasiconvex functions from
X to R, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator of gi for each i ∈ I,

T = {t = (i, j) | i ∈ I, j ∈ Ji}, T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0, k−1
t (0) = ⟨wt, x⟩},

and A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0}.
The family {gi | i ∈ I} is said to satisfy the basic constraint qualification for

quasiconvex programming (the Q-BCQ) with respect to {(kt, wt) | t ∈ T} at x ∈ A
if

NA(x) = cone co
∪

t∈T (x)

{wt}.

Theorem 2.3 [5] Let {gi | i ∈ I} be a family of lsc quasiconvex functions from
X to R, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator of gi for each i ∈ I,

T = {t = (i, j) | i ∈ I, j ∈ Ji}, T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0, k−1
t (0) = ⟨wt, x⟩},

A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0} and x0 ∈ A. Then, the following statements (i),
(ii) and (iii) are equivalent:

(i) {gi(x) ≤ 0 | i ∈ I} satisfies the Q-BCQ w.r.t. {(kt, wt) | t ∈ T} at x0,
(ii) for each f ∈ Γ0(X) with domf ∩ A ̸= ∅ and epif∗ + epiδ∗A is w∗-closed, x0 is

a minimizer of f in A if and only if there exists λ ∈ R(T )
+ such that λt = 0 for

all t ∈ T \ T (x0), and

0 ∈ ∂f(x0) +
∑
t∈T

λtwt,

(iii) for all f ∈ QF (X) ∪QC(X) with a generator G, if x0 is a local minimizer of

f in A, then, there exists λ ∈ R(T )
+ such that λt = 0 for all t ∈ T \ T (x0), and

0 ∈ ∂Gf(x0) +
∑
t∈T

λtwt,

where ∂Gf(x0) is the subdifferential in [5] of f at x0, that is, ∂Gf(x0) = cl co {D−ks(⟨ws, x0⟩)ws |
s ∈ S(x0)}, and QF (X) and QC(X) are the following families of quasiconvex func-
tions:

QF (X) =

{
sup
s∈S

ks ◦ ws

∣∣∣∣ {(ks, ws) | s ∈ S} ⊂ Q×X∗, S : finite,
∀s ∈ S, ks : continuous and lower left-hand Dini diff.

}
,

QC(X) =

sup
s∈S

ks ◦ ws

∣∣∣∣∣
{(ks, ws) | s ∈ S} ⊂ Q×X∗, S : compact,
s 7→ ws : continuous, (s, t) 7→ ks(t) : usc,
D−ks(t) ∈ R and (s, t) 7→ D−ks(t) : continuous.

 .
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3 Constraint qualifications for vector-valued quasiconvex functions

As mention in Section 1, we consider the weakest constraint qualifications for
Lagrangian-type dualities of the following minimization programming problem
with a quasiconvex vector-valued inequality constraint:{

minimize f(x),
subject to g(x) ∈ −K,

where X and Y are Banach spaces, K is a closed convex cone in Y , f is a function
from X to R = [−∞,+∞], g is a K-quasiconvex function from X to Y , and
A = {x ∈ X | g(x) ∈ −K}. Also, assume that (Y,≤K) is directed and K+ =
cl co extdK+.

Definition 3.1 Let g be a continuous K-quasiconvex function, {(k(y∗,j), w(y∗,j)) |
j ∈ Jy∗} ⊂ Q × X∗ be a generator of y∗ ◦ g for each y∗ ∈ extdK+, and T =
{t = (y∗, j) | y∗ ∈ extdK+, j ∈ Jy∗}. Assume that A is non-empty set. Then, the
vector-valued quasiconvex system {g(x) ∈ −K} satisfies the closed cone constraint
qualification for vector-valued quasiconvex programming (the VQ-CCCQ) with
respect to {(kt, wt) | t ∈ T} if

cone co
∪
t∈T

{(wt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ}+ {0} × [0,∞)

is w∗-closed.

By the similar way in [4], we can check that {g(x) ∈ −K} satisfies the VQ-CCCQ
if and only if the alternative form of the VQ-CCCQ,

epiδ∗A ⊂ cone co
∪
t∈T

{(wt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ}+ {0} × [0,∞)

holds. In the next theorem, we can see that the VQ-CCCQ is the weakest constraint
qualification of a vector-valued quasiconvex inequality system for Lagrangian-type
duality.

Theorem 3.1 Let g be a continuous K-quasiconvex function, {(k(y∗,j), w(y∗,j)) |
j ∈ Jy∗} ⊂ Q × X∗ be a generator of y∗ ◦ g for each y∗ ∈ extdK+, and T =
{t = (y∗, j) | y∗ ∈ extdK+, j ∈ Jy∗}. Assume that A is non-empty set. Then, the
following statements are equivalent:

(i) {g(x) ∈ −K} satisfies the VQ-CCCQ w.r.t. {(kt, wt) | t ∈ T},
(ii) for all f ∈ Γ0(X) with epif∗ + epiδ∗A is w∗-closed, there exists λ ∈ R(T )

+ such
that

inf
x∈A

f(x) = inf
x∈X

{f(x) +
∑
t∈T

λt(wt(x)− k−1
t (0))}.

Proof We can verify that

A = {x ∈ X | g(x) ∈ −K} = {x ∈ X | ∀y∗ ∈ extdK+, y∗ ◦ g(x) ≤ 0}

since K+ = cl co extdK+ and K = {y ∈ Y | ∀y∗ ∈ K+, ⟨y∗, y⟩ ≥ 0}, and we have

A = {x ∈ X | ∀t ∈ T, kt ◦ wt(x) ≤ 0}
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from the definition of T . Put h = supt∈T kt ◦ wt, then h is a lsc quasiconvex
function with generator {(kt, wt) | t ∈ T}. Hence, by using Theorem 2.2, we can
prove this theorem.

Next, we introduce the following constraint qualification for Lagrangian-type
min-max duality:

Definition 3.2 Let g be a continuous K-quasiconvex function, {(k(y∗,j), w(y∗,j)) |
j ∈ Jy∗} ⊂ Q×X∗ be a generator of y∗◦g for each y∗ ∈ extdK+, T = {t = (y∗, j) |
y∗ ∈ extdK+, j ∈ Jy∗}, and T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0, k−1

t (0) = ⟨wt, x⟩}.
Assume that A is non-empty set. Then, the vector-valued quasiconvex system
{g(x) ∈ −K} is said to satisfy the basic constraint qualification for vector-valued
quasiconvex programming (the VQ-BCQ) with respect to {(kt, wt) | t ∈ T} at
x ∈ A if

NA(x) = cone co
∪

t∈T (x)

{wt}.

Also, we can check that the VQ-BCQ is equivalent to the following inclusion

NA(x) ⊂ cone co
∪

t∈T (x)

{wt}.

The following result shows us the VQ-BCQ is the weakest constraint qualifi-
cation of a vector-valued quasiconvex inequality system for Lagrangian-type min-
max duality:

Theorem 3.2 Let g be a continuous K-quasiconvex function, {(k(y∗,j), w(y∗,j)) |
j ∈ Jy∗} ⊂ Q×X∗ be a generator of y∗◦g for each y∗ ∈ extdK+, T = {t = (y∗, j) |
y∗ ∈ extdK+, j ∈ Jy∗}, and T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0, k−1

t (0) = ⟨wt, x⟩}.
and x0 ∈ A. Then, the following statements (i), (ii) and (iii) are equivalent:

(i) {g(x) ∈ −K} satisfies the VQ-BCQ w.r.t. {(kt, wt) | t ∈ T} at x0,
(ii) for each f ∈ Γ0(X) with domf ∩ A ̸= ∅ and epif∗ + epiδ∗A is w∗-closed, x0 is

a minimizer of f in A if and only if there exists λ ∈ R(T )
+ such that λt = 0 for

all t ∈ T \ T (x0), and

0 ∈ ∂f(x0) +
∑
t∈T

λtwt,

(iii) for all f ∈ QF (X) ∪QC(X) with a generator G, if x0 is a local minimizer of

f in A, then, there exists λ ∈ R(T )
+ such that λt = 0 for all t ∈ T \ T (x0), and

0 ∈ ∂Gf(x0) +
∑
t∈T

λtwt,

Proof In the similar way of the proof of Theorem 3.1, we have A = {x ∈ X |
∀t ∈ T, kt ◦ wt(x) ≤ 0}, and h = supt∈T kt ◦ wt is a lsc quasiconvex function with
generator {(kt, wt) | t ∈ T}. By using Theorem 2.3, we can prove this theorem.
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4 Applications

In this section, we investigate some applications of results in this paper. Let Sn be
the vector space of (n×n) symmetric matrices with the trace inner product which
is partially ordered by ⪰, that is, for M , N ∈ Sn, M ⪰ N if and only if (M−N) is
positive semidefinite. Consider the following minimization programming problem:{

minimize f(x),
subject to G(x) ⪯ 0,

where X is a Banach space, f is a function from X to R, and G is a function
from X to Sn. Let Sn

+ = {M ∈ Sn | M ⪰ 0}. Then Sn
+ is a closed convex cone,

(Sn
+)

+ = Sn
+ and intSn

+ = {M ∈ Sn | M is positive definite}, in detail, see [2].
Since intSn

+ is nonempty, cl co extdSn
+ = Sn

+ and (Sn,≤Sn
+
) is directed, in detail,

see [7]. Hence, Theorem 3.1 and 3.2 apply to any Sn
+-quasiconvex functions.

In the rest of this section, we consider the case when n = 2. Let M =

(
a b
b c

)
∈

S2. Then, M ∈ S2
+ if and only if

(
a = 0, b = 0 and c ≥ 0

)
or
(
a > 0 and c ≥ b2

a

)
.

Now we show that

extdS2
+ = cone

({(
0 0
0 1

)}∪{(
1 b
b b2

) ∣∣∣∣ b ∈ R
})

\
{(

0 0
0 0

)}
.

Let A =

(
0 0
0 1

)
, Bb =

(
1 b
b b2

)
for all b ∈ R, M =

(
a1 b1
b1 c1

)
, and N =

(
a2 b2
b2 c2

)
∈

S2
+. First we show that A ∈ extdS2

+. If M + N = A, then a1 + a2 = 0 and a1,
a2 ≥ 0 since M and N ∈ S2

+. This implies that a1 = a2 = 0. Similarly, b1 = b2 = 0.
Also, clearly c1, c2 ≥ 0, this implies that M , N ∈ R+{A}, that is, A ∈ extdS2

+.
Next we show that Bb ∈ extdS2

+ for each b ∈ R. Assume that M + N = Bb. If
a2 = 0, then 1 = a1, b = b1, and b2 = c1 + c2. Since a1 = 1 and c2 ≥ 0,

b2 = c1 + c2 ≥ c1 ≥ b21
a1

= b2,

that is c1 = b2 and c2 = 0. Hence, M =

(
1 b
b b2

)
and N = 0 ∈ R{B}. If a1 ̸= 0

and a2 ̸= 0, then 1 = a1 + a2, b = b1 + b2, b
2 = c1 + c2, c1 ≥ b21

a1
and c2 ≥ b22

a2
.

Clearly, 1 > a1 > 0. Then,

b21
a1

+
b22
a2

− b2 =
b21
a1

+
(b− b1)

2

1− a1
− b2 =

(b1 − ba1)
2

a1(1− a1)
≥ 0.

Hence,

b2 = c1 + c2 ≥ b21
a1

+
b22
a2

≥ b2,
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that is c1 =
b21
a1

and c2 =
b22
a2
. Therefore, M = a1

(
1 b1

a1

b1
a1

b21
a2
1

)
, N = a2

(
1 b2

a2

b2
a2

b22
a2
2

)
∈

R+{Bb}. This implies that Bb ∈ extdS2
+. Since λM ∈ extdS2

+ holds for any
M ∈ extdS2

+ and λ > 0, we have

extdS2
+ ⊃ cone

({(
0 0
0 1

)}∪{(
1 b
b b2

) ∣∣∣∣ b ∈ R
})

\
{(

0 0
0 0

)}
.

Conversely, let M =

(
a b
b c

)
∈ extdS2

+. If a = 0, then a = b = 0 and c > 0 since

M ∈ S2
+ and M ̸= 0, that is, M = cA. If a ̸= 0, then a > 0 and c ≥ b2

a since

M ∈ S2
+. Then, c = b2

a and M is an element of the right-hand side. Actually, if

c > b2

a then

M =

(
a b

b b2

a

)
+

(
0 0

0 c− b2

a

)
.

This is a contradiction. Therefore, the equality holds. Let G be a function from X
to S2 and g1, g2, and g3 be functions from X to R as follows:

g1 = Tr

[(
1 0
0 0

)
G

]
, g2 = Tr

[(
0 0
1 0

)
G

]
, g3 = Tr

[(
0 0
0 1

)
G

]
,

where TrM is the trace of a matrix M . Then, we can verify that G =

(
g1 g2
g2 g3

)
,

and by Theorem 2.1, G is S2
+-quasiconvex if and only if g3 and g1 + 2bg2 + b2g3

(b ∈ R) are quasiconvex.
Assume that G is S2

+-quasiconvex. Then, for each b ∈ R, there exists a gen-
erator {(k(b,j), w(b,j)) | j ∈ Jb} ⊂ Q × X∗ of g1 + 2bg2 + b2g3 and there ex-
ists a generator {(k(γ,j), w(γ,j)) | j ∈ Jγ} ⊂ Q × X∗ of g3, where γ is an
index. We can reput generators {(k(b,w), w) | w ∈ SX∗} ⊂ Q × X∗ of g1 +

2bg2 + a2g3 where SX∗ = {x∗ ∈ X∗ | ∥x∗∥ = 1}. Actually, let J(b,0) = {j ∈
Jb | w(b,j) = 0}, J(b,w) = {j ∈ Jb | w =

w(b,j)

∥w(b,j)∥} for all w ∈ SX∗ and let

k(b,w)(t) = max{supj∈J(b,w)
k(b,j)(∥w(b,j)∥t), supj∈J(b,0)

k(b,j)(0)} for all w ∈ SX∗ .

Then, k(b,w) ∈ Q and g1 + 2bg2 + b2g3 = supw∈SX∗ k(b,w) ◦ w. Also, we can reput
a generator of g3 similarly. Let

D = cone co
∪

w∈SX∗

{
(w, δ)

∣∣∣∣ inf
b∈R∪{γ}

k−1
(b,w)(0) ≤ δ

}
+ {0} × [0,∞).

We can show the following corollary.

Corollary 4.1 Assume that A = {x ∈ X | G(x) ⪯ 0} is nonempty. Then, D is
closed if and only if for all f ∈ Γ0(X) with epif∗+epiδ∗A is w∗-closed, there exists

λ ∈ R(SX∗ )
+ such that

inf
x∈A

f(x) = inf
x∈X

f(x) +
∑

w∈SX∗

λw(⟨w, x⟩ − inf
b∈R∪{γ}

k−1
(b,w)(0))

 .
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Proof We can verify that

D : closed ⇐⇒ {g3(x) ≤ 0, (g1 + bg2 + b2g3)(x) ≤ 0 | b ∈ R} : Q-CCCQ

⇐⇒ {G(x) ⪯ 0} : VQ-CCCQ.

By using Theorem 3.1, we can proof this corollary.

We compare the condition “D is closed” with previous constraint qualifications.
In [9], the following constraint qualification, Farkas-Minkowski (FM), was investi-
gated. Let I be an index set, for each i ∈ I, let gi ∈ Γ0(X). The convex system
{gi(x) ≤ 0 | i ∈ I} is said to be FM if cone co

∪
i∈I epig

∗
i is w∗-closed. Also, FM is

closely related to the closedness of D and the Slater type constraint qualification,
“there exists x ∈ X such that for all w ∈ SX∗ ⟨w, x⟩ < infb∈R∪{γ} k

−1
(b,w)(0)”,

assures that D is closed. Actually,

D : closed ⇐⇒ {g3(x) ≤ 0, (g1 + bg2 + b2g3)(x) ≤ 0 | b ∈ R} : Q-CCCQ

⇐⇒ {w(x)− k−1
(b,w)(0) ≤ 0 | b ∈ R ∪ {γ}, w ∈ SX∗} : FM

⇐⇒ {w(x)− inf
b∈R∪{γ}

k−1
(b,w)(0) ≤ 0 | w ∈ SX∗} : FM

and the Slater constraint qualification implies the FM, in detail see [1,4,9].
Similarly, we can show the following corollary.

Corollary 4.2 Let A = {x ∈ X | G(x) ⪯ 0}, x0 ∈ A, and SX∗(x0) = {w ∈ SX∗ |
⟨w, x⟩ = infb∈R∪{γ} k

−1
(b,w)(0)}. Then, the following conditions are equivalent.

(i) NA(x0) = cone coSX∗(x0),
(ii) for each f ∈ Γ0(X) with domf ∩ A ̸= ∅ and epif∗ + epiδ∗A is w∗-closed, x0 is

a minimizer of f in A if and only if there exists λ ∈ R(SX∗ )
+ such that λw = 0

for all w ∈ SX∗ \ SX∗(x0), and

0 ∈ ∂f(x0) +
∑

w∈SX∗

λww.

Proof We can verify that {G(x) ⪯ 0} satisfies VQ-BCQ if and only if NA(x0) =
cone coSX∗(x0). By using Theorem 3.2, we can proof this corollary.

5 Conclusion

We define constraint qualifications the VQ-CCCQ and the VQ-BCQ for quasicon-
vex vector-valued systems, and we prove the VQ-CCCQ is the weakest constraint
qualifications for Lagrangian-type strong duality (Theorem 3.1), and the VQ-BCQ
is one for Lagrangian-type min-max duality (Theorem 3.2).

The following table shows the weakest constraint qualifications of real/vector-
valued convex/quasiconvex inequality systems for Lagrangian strong/min-max du-
alities.

strong min-max

real-valued convex FM [9] BCQ [3]

vector-valued convex CCCQ [1,2] [CQ2] [2]

real-valued quasiconvex Q-CCCQ [4] Q-BCQ [5]

vector-valued quasiconvex VQ-CCCQ(Theorem 3.1) VQ-BCQ(Theorem 3.2)
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