
Optimality conditions for nonlinear and nonconvex
programming problems

Yusuke Saeki

Interdisciplinary Graduate School of Science and Engineering

Shimane University

March, 2015



Preface

In the study of mathematical programming, many mathematicians have consid-
ered optimality conditions for mathematical programming problems. In differen-
tiable programming problems [2, 4, 6, 13, 16] which include linear programming
problems and are nonlinear programming problems, the Karush-Kuhn-Tucker
condition is the best-known necessary optimality condition under certain qual-
ifications imposed on the constraints. Such constraint qualifications have been
proposed, for example, linear independence constraint qualification, Cottle’s con-
straint qualification, Abadie’s constraint qualification, and Guignard’s constraint
qualification. In particular, Guignard’s constraint qualification is necessary and
sufficient for the Karush-Kuhn-Tucker necessary optimality conditions in differ-
entiable programming problems, see [2].

In convex programming problems [12, 18, 19, 21, 25, 26, 27, 28], Slater condi-
tion, Farkas-Minkowski and the basic constraint qualification are known as con-
straint qualifications. Farkas-Minkowski is a necessary and sufficient constraint
qualification for the Lagrangian strong duality in convex programming problems,
see [26]. Also, the basic constraint qualification is a necessary and sufficient con-
straint qualification for global optimality conditions in convex programming prob-
lems, see [28]. Nonconvex programming problems involving convex programming
problems have been extensively researched, for example, DC programming prob-
lems [8, 11, 14, 23, 29, 30, 31], fractional programming problems [1, 11, 22] and
mathematical programming problems with reverse convex constraints [7, 10, 20].

In this thesis, we consider optimality conditions for nonlinear and nonconvex
programming problems appeared in the following chapters and constraint quali-
fications for these conditions. The purpose of the thesis is to consider necessary
and sufficient constraint qualifications for optimality conditions in these mathe-
matical programming problems. The thesis is divided into five chapters and is
organized as follows.

In Chapter 1, we introduce a real topological vector space, and definitions
and notations in convex analysis. Also, we introduce results related to convex
analysis. Moreover, we introduce some definitions and notations in the Euclidean
space.

In Chapter 2, we show that the basic constraint qualification is a necessary
and sufficient constraint qualification for local optimality conditions in DC pro-
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gramming problems with convex inequality constraints in a real locally convex
Hausdorff topological vector space. Also, we show that the basic constraint qual-
ification is a necessary and sufficient constraint qualification for local optimality
conditions in fractional programming problems and weakly convex programming
problems.

In Chapter 3, we give necessary local and sufficient global optimality con-
ditions for DC programming problems with reverse convex constraints in the
Euclidean space. Also, we show that a certain condition is necessary and suf-
ficient for sufficient global optimality conditions in DC programming problems
with reverse convex constraints. Moreover, we give optimality conditions for DC
programming problems and fractional programming problems.

In Chapter 4, we show that Farkas-Minkowski is a necessary and sufficient
constraint qualification for ε-optimality conditions in DC programming problems
with convex inequality constraints in a real locally convex Hausdorff topological
vector space. Also, we show that Farkas-Minkowski is a necessary and suffi-
cient constraint qualification for ε-optimality conditions in fractional program-
ming problems.

In Chapter 5, we investigate a necessary and sufficient constraint qualifica-
tion for sufficient optimality conditions in differentiable programming, where the
objective function is pseudoconvex at a point. Also, we observe necessary and
sufficient constraint qualifications for sufficient conditions for Pareto optimality
and weak Pareto optimality in differentiable multiobjective programming, where
the components of the objective function or the linear combination of them is
assumed some convexity condition.
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Chapter 1

Preliminaries

In this chapter, we introduce a real topological vector space and notations in
convex analysis. Also, we introduce results related to convex analysis. Moreover,
we introduce some definitions and notations in the Euclidean space.

1.1 Topological vector space and notations

A real topological vector space is a vector space over R equipped with a topology
such that the vector space operations of addition and scalar multiplication are
continuous. Also, let X∗ be the topological dual space of the space X endowed
with the weak∗-topology, and let 〈x∗, x〉 denote the value of a functional x∗ ∈ X∗
at x ∈ X, that is, 〈x∗, x〉 = x∗(x). A real locally convex topological vector space
is a real topological vector space which has a local basis at 0 consisting of convex
sets. Let X be a real locally convex Hausdorff topological vector space.

Definition 1.1. Let A be a subset of X and let B be a nonempty subset of X.

(i) A is said to be convex if (1−α)x+αy ∈ A whenever x, y ∈ A and α ∈ (0, 1),

(ii) B is said to be a cone if λk ∈ B whenever k ∈ B and λ ≥ 0.

It is clear that the whole space and the empty set are convex. For a set
A ⊂ X, we denote the closure, the interior, the convex hull and the conical hull
of A, by clA, intA, coA and coneA, respectively.

The effective domain and epigraph of f : X → R ∪ {+∞} are defined by

dom f = {x ∈ X | f(x) < +∞},

and
epi f = {(x, r) ∈ X × R | f(x) ≤ r},

respectively.

Definition 1.2. Let f be a function from X to R ∪ {+∞}.
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(i) f is said to be convex if epi f is convex,

(ii) f is said to be proper if dom f is nonempty.

Let f : X → R∪{+∞} be a proper convex function. The conjugate function
of f , f ∗ : X∗ → R ∪ {+∞}, is defined by

f ∗(x∗) = sup{〈x∗, x〉 − f(x) | x ∈ X}

for each x∗ ∈ X∗. For any ε ≥ 0, the ε-subdifferential of f at x ∈ dom f , denoted
by ∂εf(x), is defined by

∂εf(x) = {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ f(y)− f(x) + ε for each y ∈ X}.

When ε = 0, ∂0f(x) is the subdifferential of f at x, and is often denoted by
∂f(x).

Let A be a convex set in X. The indicator function δA is defined by

δA(x) =

{
0 x ∈ A,
+∞ otherwise.

For any ε ≥ 0, the ε-normal cone of A at x ∈ A, denoted by Nε(A, x), is defined
by

Nε(A, x) = ∂εδA(x) = {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ ε for each y ∈ A}.

When ε = 0, N0(A, x) is the normal cone of A at x and is often denoted by
NA(x).

1.2 Results in convex analysis

We introduce important results in convex analysis. First, the following theorem
was proved in [12].

Theorem 1.1 ([12]). Let f : X → R ∪ {+∞} be a lower semicontinuous (lsc)
proper convex function and x ∈ dom f . Then

epi f ∗ =
⋃
ε≥0

{(v, ε− f(x) + 〈v, x〉) | v ∈ ∂εf(x)}.

Next, the following theorem was shown in [24].

Theorem 1.2 ([24]). Let f and g be lsc proper convex functions from X to
R ∪ {+∞} such that dom f ∩ dom g 6= ∅. Then the following statements are
equivalent:

(a) epi f ∗ + epi g∗ is weak∗-closed.
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(b) for any ε ≥ 0 and x ∈ dom f ∩ dom g,

∂ε(f + g)(x) =
⋃

ε1,ε2≥0

ε1+ε2=ε

(∂ε1f(x) + ∂ε2g(x)).

In particular, if epi f ∗ + epi g∗ is weak∗-closed, then for any x ∈ dom f ∩ dom g,

∂(f + g)(x) = ∂f(x) + ∂g(x).

Finally, we introduce the following optimality conditions for unconstrained
DC (difference of convex functions) programming problems by Hiriart-Urruty [8].
For a function f : X → R ∪ {+∞}, a set A ⊂ X and ε ≥ 0, we say that a point
x̄ ∈ A is an ε-minimizer of f in A if f is finite at x̄ and f(x) ≥ f(x̄)− ε for each
x ∈ A.

Theorem 1.3 ([8]). Let f : X → R∪{+∞} be a lsc proper convex function and
g : X → R be a lsc convex function. The following statements hold.

(i) If x̄ ∈ X is a local minimizer of f − g in X, then

∂g(x̄) ⊂ ∂f(x̄).

(ii) For any ε ≥ 0, x̄ ∈ X is an ε-minimizer of f − g in X if and only if for each
α ≥ 0,

∂αg(x̄) ⊂ ∂α+εf(x̄).

In particular, x̄ ∈ X is a minimizer of f − g in X if and only if for each
α ≥ 0,

∂αg(x̄) ⊂ ∂αf(x̄).

1.3 Notations in the Euclidean space

The usual inner product of two vectors x and y in the n-dimensional Euclidean
space Rn is denoted by 〈x, y〉, and the norm of a vector x in Rn is denoted by
‖x‖.

Remark 1.1. Since (Rn)∗ can be identified with Rn, for convenience, this inner
product is denoted by 〈x∗, x〉 which is the value of a functional x∗ ∈ (Rn)∗ at
x ∈ Rn introduced in Section 1.1.

Let A be a nonempty subset of Rn. The positive polar cone A+ and the
negative polar cone A− are defined by

A+ = {x∗ ∈ Rn | 〈x∗, x〉 ≥ 0 for each x ∈ A},
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and
A− = {x∗ ∈ Rn | 〈x∗, x〉 ≤ 0 for each x ∈ A},

respectively. We note that A+ and A− are closed convex and

(A+)+ = (A−)− = cl cone co A.

The tangent cone to A at x ∈ A, denoted by TA(x), is defined by

TA(x) = {d ∈ Rn | there exist tk ↓ 0, dk → d such that x+ tkdk ∈ A}.

The tangent cone TA(x) is always closed but not necessarily convex. If B is a
subset of Rn and x ∈ A ∩B, then

A ⊂ B ⇒ TA(x) ⊂ TB(x).

The normal cone to A at x ∈ A, denoted by NA(x), is defined by

NA(x) = (TA(x))−.

Remark 1.2. Since this normal cone becomes the normal cone introduced in
Section 1.1 whenever A is convex, this normal cone is denoted by NA(x) for
convenience.

Let f : Rn → R ∪ {+∞} be a proper convex function. Define level sets of f
with respect to a binary relation � on R ∪ {+∞} as

L(f, �, α) = {x ∈ Rn | f(x) � α},

for each α ∈ R. The directional derivative of f at x ∈ dom f in direction of
d ∈ Rn is defined by

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
,

where dom f is the effective domain of f .
We introduce the concepts of convexity, quasiconvexity and pseudoconvexity

at a point, see [5].

Definition 1.3. Let f : Rn → R and x̄ ∈ Rn. The function f is said to be

(i) convex at x̄, if for each λ ∈ (0, 1) and x ∈ Rn,

f((1− λ)x̄+ λx) ≤ (1− λ)f(x̄) + λf(x);

(ii) strictly convex at x̄, if for each λ ∈ (0, 1) and x ∈ Rn \ {x̄},

f((1− λ)x̄+ λx) < (1− λ)f(x̄) + λf(x);
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(iii) quasiconvex at x̄, if for each λ ∈ (0, 1) and x ∈ Rn,

f((1− λ)x̄+ λx) ≤ max{f(x̄), f(x)};

(iv) pseudoconvex at x̄, if f is differentiable at x̄, and for each x ∈ Rn,

〈∇f(x̄), x− x̄〉 ≥ 0 implies that f(x) ≥ f(x̄);

(v) strictly pseudoconvex at x̄, if f is differentiable at x̄, and for each x ∈
Rn \ {x̄},

〈∇f(x̄), x− x̄〉 ≥ 0 implies that f(x) > f(x̄).

Proposition 1.1. The following statements hold.

(i) If f is both convex and differentiable at x̄, then for each x ∈ Rn,

〈∇f(x̄), x− x̄〉 ≤ f(x)− f(x̄).

(ii) If f is both strictly convex and differentiable at x̄, then for each x ∈ Rn\{x̄},

〈∇f(x̄), x− x̄〉 < f(x)− f(x̄).

(iii) If f is both quasiconvex and differentiable at x̄, then for each x ∈ Rn,

f(x) ≤ f(x̄) implies that 〈∇f(x̄), x− x̄〉 ≤ 0.

The above statements are analogous to well-known results in [5], and proofs
are omitted. The following result is important to show theorems in Chapter 5;
(iv) and (v) follow from Proposition 1.1 immediately.

Proposition 1.2. Let f : Rn → R and x̄ ∈ Rn. Then the following statements
hold.

(i) If f is strictly convex at x̄ then f is convex at x̄.

(ii) If f is convex at x̄ then f is quasiconvex at x̄.

(iii) If f is strictly pseudoconvex at x̄ then f is pseudoconvex at x̄.

(iv) If f is convex and differentiable at x̄ then f is pseudoconvex at x̄.

(v) If f is strictly convex and differentiable at x̄ then f is strictly pseudoconvex
at x̄.



Chapter 2

Local optimality for DC
programming

In this chapter, we investigate a constraint qualification for local optimality condi-
tions in DC programming problems with convex inequality constraints. Through-
out this chapter, let X be a real locally convex Hausdorff topological vector space,
and we consider mathematical programming problems under the following con-
straint set:

S = {x ∈ X | hi(x) ≤ 0 for each i ∈ I},
where I is an arbitrary index set and hi : X → R ∪ {+∞}, i ∈ I, are lsc proper
convex functions. This chapter is based on [32].

We introduce the basic constraint qualification (the BCQ) that is a necessary
and sufficient constraint qualification for global optimality conditions in convex
programming problems by Li, Ng and Pong [28].

Definition 2.1 ([28]). Let {hi | i ∈ I} be a family of lsc proper convex functions
from X to R∪{+∞}. The family {hi | i ∈ I} is said to satisfy the BCQ at x̄ ∈ S
if

NS(x̄) = cone co
⋃
i∈I(x̄)

∂hi(x̄),

where I(x̄) = {i ∈ I | hi(x̄) = 0}.
Theorem 2.1 ([28]). Let {hi | i ∈ I} be a family of lsc proper convex functions
from X to R∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies the BCQ at x̄.

(ii) For each lsc proper convex function f : X → R∪ {+∞} such that dom f ∩
S 6= ∅ and epi f ∗ + epi δ∗S is weak∗-closed, x̄ is a minimizer of f in S if and

only if there exists λ ∈ R(I)
+ such that λihi(x̄) = 0 for each i ∈ I, and

0 ∈ ∂f(x̄) +
∑
i∈I

λi∂hi(x̄),
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where R(I)
+ is the set of nonnegative real tuples λ = (λi)i∈I with only finitely

many λi 6= 0.

This theorem shows that the BCQ is a necessary and sufficient constraint
qualification for global optimality conditions in convex programming problems.

2.1 DC programming

In this section, we consider the following DC programming problem:

minimize f(x)− g(x),
subject to hi(x) ≤ 0, i ∈ I,

where f : X → R∪ {+∞} is a lsc proper convex function and g : X → R is a lsc
convex function.

Theorem 2.2. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies the BCQ at x̄.

(ii) For each lsc proper convex function f : X → R∪ {+∞} such that dom f ∩
S 6= ∅ and epi f ∗+epi δ∗S is weak∗-closed, and lsc convex function g : X → R,
if x̄ is a local minimizer of f − g in S, then for each v ∈ ∂g(x̄), there exists

λ ∈ R(I)
+ such that λihi(x̄) = 0 for each i ∈ I, and

v ∈ ∂f(x̄) +
∑
i∈I

λi∂hi(x̄).

Proof. First, we prove (i) implies (ii). Assume that (i) holds. Let f be a lsc
proper convex function from X to R ∪ {+∞} such that dom f ∩ S 6= ∅ and
epi f ∗ + epi δ∗S is weak∗-closed, and g be a lsc convex function from X to R. The
point x̄ is a local minimizer of f − g in S if and only if x̄ is a local minimizer of
(f + δS) − g in X. We have from Theorem 1.3 that if x̄ is a local minimizer of
(f + δS)− g in X, then

∂g(x̄) ⊂ ∂(f + δS)(x̄).

By Theorem 1.2,
∂(f + δS)(x̄) = ∂f(x̄) + ∂δS(x̄).

Since ∂δS(x̄) = NS(x̄) and the assumption (i) holds,

∂f(x̄) + ∂δS(x̄) = ∂f(x̄) + cone co
⋃
i∈I(x̄)

∂hi(x̄).
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Hence, if x̄ is a local minimizer of f − g in S, then

∂g(x̄) ⊂ ∂f(x̄) + cone co
⋃
i∈I(x̄)

∂hi(x̄).

This implies that (ii) holds.
Next, we prove (ii) implies (i). Assume that (ii) holds and let x∗ ∈ NS(x̄).

Then x̄ is a minimizer of −x∗ in S. By setting f = −x∗ and g = 0 in assumption
(ii), there exists λ ∈ R(I)

+ such that λihi(x̄) = 0 for each i ∈ I, and

0 ∈ −x∗ +
∑
i∈I

λi∂hi(x̄).

Therefore, we have

x∗ ∈
∑
i∈I

λi∂hi(x̄) =
∑
i∈I(x̄)

λi∂hi(x̄) ⊂ cone co
⋃
i∈I(x̄)

∂hi(x̄),

and hence NS(x̄) ⊂ cone co
⋃
i∈I(x̄) ∂hi(x̄) holds. Since the converse inclusion is

always satisfied, (i) holds. This completes the proof.

This theorem shows that the BCQ is a necessary and sufficient constraint
qualification for local optimality conditions in DC programming problems with
convex inequality constraints.

2.2 Applications

In this section, we apply the result of previous section to fractional programming
problems and weakly convex programming problems. In particular, we consider
weakly convex programming problems in a smooth real Banach space.

2.2.1 Fractional programming

We consider the following fractional programming problem:

minimize f(x)/g(x),
subject to hi(x) ≤ 0, i ∈ I,

where f : X → R∪ {+∞} is a lsc proper convex function and g : X → R is a lsc
convex function such that f is nonnegative and g is positive on S.

Theorem 2.3. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies the BCQ at x̄.
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(ii) For each lsc proper convex function f : X → R∪ {+∞} such that dom f ∩
S 6= ∅, epi f ∗ + epi δ∗S is weak∗-closed and f is nonnegative on S, and lsc
convex function g : X → R such that g is positive on S, if x̄ is a local
minimizer of f/g in S, then there exists λ0 ≥ 0 such that for each v ∈
λ0∂g(x̄), there exists λ ∈ R(I)

+ such that λihi(x̄) = 0 for each i ∈ I, and

v ∈ ∂f(x̄) +
∑
i∈I

λi∂hi(x̄).

Proof. We first prove (i) implies (ii). Let f be a lsc proper convex function from
X to R ∪ {+∞} such that dom f ∩ S 6= ∅, epi f ∗ + epi δ∗S is weak∗-closed and f
is nonnegative on S, and g be a lsc convex function from X to R such that g is
positive on S. In addition, let x̄ be a local minimizer of f/g in S. By putting
λ0 = f(x̄)/g(x̄), x̄ is a local minimizer of f − λ0g in S. Because f − λ0g is a DC
function, we can prove (i) implies (ii) by using Theorem 2.2. Also, it is clear that
(ii) implies (i) by taking f = −x∗ + 〈x∗, x̄〉 and g = 1.

This theorem shows that the BCQ is also a necessary and sufficient constraint
qualification for the fractional programming problems.

2.2.2 Weakly convex programming

Let X be a real Banach space with norm ‖·‖. The norm of X∗ is also denoted
by ‖·‖ for convenience. The duality mapping of X, the multivalued operator
J : X → X∗, is defined by

J(x) = {x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}

for each x ∈ X. Let S(X) denote the unit sphere of X, that is, S(X) = {x ∈
X | ‖x‖ = 1}. Then X is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S(X). In this case, because the duality mapping J of X is
single valued, J(x) is identified with the element of J(x) for each x ∈ X; see [15].

Recall that a function p is weakly convex if it can be written as p = q− ρ
2
‖·‖2

for some convex function q and ρ ≥ 0. We consider the following weakly convex
programming problem:

minimize f(x)− ρ
2
‖x‖2,

subject to hi(x) ≤ 0, i ∈ I,

where f : X → R ∪ {+∞} is a lsc proper convex function and ρ ≥ 0.
We show the following theorem in a smooth real Banach space.
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Theorem 2.4. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, and x̄ ∈ S. Assume that X is smooth. Then the following
statements are equivalent:

(i) The family {hi | i ∈ I} satisfies the BCQ at x̄.

(ii) For each lsc proper convex function f : X → R∪ {+∞} such that dom f ∩
S 6= ∅ and epi f ∗+epi δ∗S is weak∗-closed, and ρ ≥ 0, if x̄ is a local minimizer

of f − ρ
2
‖·‖2 in S, then there exists λ ∈ R(I)

+ such that λihi(x̄) = 0 for each
i ∈ I, and

ρJ(x̄) ∈ ∂f(x̄) +
∑
i∈I

λi∂hi(x̄).

Proof. Since X is smooth, J is single valued. By taking g as ρ
2
‖·‖2 in Theorem 2.2,

we can prove (i) implies (ii) because ∂g(x̄) = ρJ(x̄). Also, it is clear that (ii)
implies (i).

Example 2.1. Consider the problem:

minimize 1
4
x4 + |x| − x2,

subject to max{0,−x} ≤ 0.

Let X = R, I = {1}, f(x) = 1
4
x4 + |x|, ρ = 2, h1(x) = max{0,−x} and

S = [0,+∞). Then f and h1 are continuous convex functions and {hi | i ∈ I}
satisfies the BCQ at each point of S. Let x̄ be a local minimizer of f(x) − ρ

2
x2

in S. By Theorem 2.4, there exists λ1 ≥ 0 such that ρx̄ ∈ ∂f(x̄) + λ1∂h1(x̄)
and λ1h1(x̄) = 0, because J is an identity map for X. When x̄ > 0, since

∂f(x̄) = x̄3 + {1} and ∂h1(x̄) = {0}, x̄ must be 1 or −1+
√

5
2

. They also satisfy
λ1h1(x̄) = 0. Otherwise, when x̄ = 0, since ∂f(x̄) = x̄3 + [−1, 1] and ∂h1(x̄) =
[−1, 0], x̄ ∈ [−λ1−1, 1] holds whenever λ1 ≥ 0. Also, x̄ = 0 satisfies λ1h1(x̄) = 0.

Therefore 0, 1 and −1+
√

5
2

have possibilities for local minimizers, and actually, 0 is

the global minimizer and 1 is a local minimizer. But −1+
√

5
2

is neither a minimizer
nor a local minimizer.



Chapter 3

DC programming with reverse
convex constraints

In this chapter, we consider optimality conditions for DC programming problems
with reverse convex constraints in the Euclidean space Rn. This chapter is based
on [33].

3.1 The tangent cones to upper level sets

In this section, we consider the tangent cones to the upper level sets of pseu-
doconvex functions. Recall that a differentiable function h is pseudoconvex if
〈∇h(x), y − x〉 ≥ 0 implies h(y) ≥ h(x). We note that a differentiable convex
function is pseudoconvex. We first introduce the following theorem established
by Bazaraa, Goode and Nashed [3].

Theorem 3.1 ([3]). Let h : Rn → R be a differentiable function at x̄ ∈ Rn.
Assume that ∇h(x̄) 6= 0. Then

TL(h,≤,h(x̄))(x̄) = {d ∈ Rn | 〈∇h(x̄), d〉 ≤ 0},

TL(h,≥,h(x̄))(x̄) = {d ∈ Rn | 〈∇h(x̄), d〉 ≥ 0}.

In the following theorem, we prove a characterization of the tangent cone to
the upper level set of a pseudoconvex function without ∇h(x̄) 6= 0.

Theorem 3.2. Let h : Rn → R be a pseudoconvex function and x̄ ∈ Rn. Then

TL(h,≥,h(x̄))(x̄) = {d ∈ Rn | 〈∇h(x̄), d〉 ≥ 0}.

Proof. When ∇h(x̄) = 0, by the pseudoconvexity of h, we have L(h,≥, h(x̄)) =
Rn. Thus, TL(h,≥,h(x̄))(x̄) = Rn and {d ∈ Rn | 〈∇h(x̄), d〉 ≥ 0} = Rn. When
∇h(x̄) 6= 0, the conclusion follows from Theorem 3.1. This completes the proof.

11
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Theorem 3.3. Let I = {1, 2, . . . ,m}, hi : Rn → R, i ∈ I, be pseudoconvex
functions and x̄ ∈ Rn. Then

T∩i∈IL(hi,≥,hi(x̄))(x̄) = ∩i∈ITL(hi,≥,hi(x̄))(x̄).

Proof. For each i ∈ I, since ∩j∈IL(hj,≥, hj(x̄)) ⊂ L(hi,≥, hi(x̄)), we have

T∩j∈IL(hj ,≥,hj(x̄))(x̄) ⊂ TL(hi,≥,hi(x̄))(x̄).

Therefore,
T∩i∈IL(hi,≥,hi(x̄))(x̄) ⊂ ∩i∈ITL(hi,≥,hi(x̄))(x̄).

Conversely, let d ∈ ∩i∈ITL(hi,≥,hi(x̄))(x̄). From Theorem 3.2, 〈∇hi(x̄), d〉 ≥ 0 for
each i ∈ I. For each k ∈ N and i ∈ I, since 〈∇hi(x̄), x̄+ (1/k)d− x̄〉 ≥ 0 and
the pseudoconvexity of hi, we have hi(x̄+ (1/k)d) ≥ hi(x̄), that is, x̄+ (1/k)d ∈
L(hi,≥, hi(x̄)). Thus x̄+(1/k)d ∈ ∩i∈IL(hi,≥, hi(x̄)) and d ∈ T∩i∈IL(hi,≥,hi(x̄))(x̄).
Hence,

∩i∈ITL(hi,≥,hi(x̄))(x̄) ⊂ T∩i∈IL(hi,≥,hi(x̄))(x̄),

and this completes the proof.

In the following example, we can see that Theorem 3.3 is satisfied.

Example 3.1. Let n = 2, I = {1, 2}, h1(x1, x2) = x2
1 − x2, h2(x1, x2) = x2

1 + x2

and x̄ = (0, 0). Then h1 and h2 are differentiable convex functions, L(h1,≥
, h1(x̄)) = {(x1, x2) ∈ R2 | x2

1 ≥ x2} and L(h2,≥, h2(x̄)) = {(x1, x2) ∈ R2 | x2 ≥
−x2

1}. Further, TL(h1,≥,h1(x̄))(x̄) = {(x1, x2) ∈ R2 | x2 ≤ 0} and TL(h2,≥,h2(x̄))(x̄) =
{(x1, x2) ∈ R2 | x2 ≥ 0}. Thus, T∩2

i=1L(hi,≥,hi(x̄))(x̄) = {(x1, x2) ∈ R2 | x2 = 0} =

∩2
i=1TL(hi,≥,hi(x̄))(x̄).

3.2 Local optimality conditions

In this section, we consider necessary local optimality conditions for DC pro-
gramming problems with a set constraint and reverse convex constraints.

First, we consider the following DC programming problem with a set con-
straint:

minimize f(x)− g(x),
subject to x ∈ S,

where f , g : Rn → R are convex functions and S is a subset of Rn.
We show the following theorem by using some results related to convex anal-

ysis, for example, see [17].

Theorem 3.4. Let f , g : Rn → R be convex functions, S be a subset of Rn and
x̄ ∈ S. Assume that TS(x̄) is a convex set. If x̄ is a local minimizer of f − g in
S, then

∂g(x̄) ⊂ ∂f(x̄) +NS(x̄).
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Proof. Suppose that there exists v0 ∈ ∂g(x̄) such that v0 /∈ ∂f(x̄) +NS(x̄). Since
∂f(x̄) + NS(x̄) is a closed convex set, by the separation theorem, there exists
d0 ∈ Rn such that

〈x∗ + y∗, d0〉 < 〈v0, d0〉 ,

for each x∗ ∈ ∂f(x̄) and y∗ ∈ NS(x̄). Therefore,

〈x∗ − v0, d0〉 < 0 ≤ 〈−y∗, d0〉 ,

for each x∗ ∈ ∂f(x̄) and y∗ ∈ NS(x̄). Because 〈y∗, d0〉 ≤ 0 for each y∗ ∈ NS(x̄)
and TS(x̄) is a convex set, d0 ∈ TS(x̄). Then there exist tk ↓ 0 and dk → d0 such
that x̄+ tkdk ∈ S. Since x̄ is a local minimizer of f − g in S,

g(x̄+ tkdk)− g(x̄) ≤ f(x̄+ tkdk)− f(x̄),

for large enough k.
Now, we show that f ′(x̄; d0) = limk→∞(f(x̄+tkdk)−f(x̄))/tk. Since f is locally

Lipschitz at x̄, there exists K > 0 such that |f(x̄+tkdk)−f(x̄+tkd0)| ≤ K‖tk(dk−
d0)‖ for large enough k. Therefore, limk→∞(f(x̄ + tkdk) − f(x̄ + tkd0))/tk = 0.
Thus,

lim
k→∞

f(x̄+tkdk)−f(x̄)
tk

= lim
k→∞

f(x̄+tkdk)−f(x̄+tkd0)+f(x̄+tkd0)−f(x̄)
tk

= lim
k→∞

f(x̄+tkdk)−f(x̄+tkd0)
tk

+ lim
k→∞

f(x̄+tkd0)−f(x̄)
tk

= f ′(x̄; d0).

Similarly, we can show that g′(x̄; d0) = limk→∞(g(x̄+ tkdk)−g(x̄))/tk. Hence,

g′(x̄; d0) = lim
k→∞

g(x̄+ tkdk)− g(x̄)

tk
≤ lim

k→∞

f(x̄+ tkdk)− f(x̄)

tk
= f ′(x̄; d0).

Since f ′(x̄; d0) = supx∗∈∂f(x̄) 〈x∗, d0〉 and ∂f(x̄) is compact, there exists x∗0 ∈
∂f(x̄) such that f ′(x̄; d0) = 〈x∗0, d0〉. Thus,

〈v0, d0〉 ≤ g′(x̄; d0) ≤ f ′(x̄; d0) = 〈x∗0, d0〉 ,

because v0 ∈ ∂g(x̄). Then 〈x∗0 − v0, d0〉 ≥ 0, and this is a contradiction.

Next, we consider the following DC programming problem with reverse convex
constraints:

minimize f(x)− g(x),
subject to hi(x) ≥ 0, i ∈ I,

where I = {1, 2, . . . ,m}, f , g : Rn → R are convex functions and hi : Rn → R,
i ∈ I, are pseudoconvex functions.

Lemma 3.1. Let hi : Rn → R, i ∈ I, be pseudoconvex functions, S = {x ∈ Rn |
hi(x) ≥ 0 for each i ∈ I} and x̄ ∈ S. Then
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(i) TS(x̄) = ∩i∈I(x̄){d ∈ Rn | 〈∇hi(x̄), d〉 ≥ 0},

(ii) NS(x̄) = cone co ∪i∈I(x̄) {−∇hi(x̄)},

where I(x̄) = {i ∈ I | hi(x̄) = 0}.

Proof. (i) We first prove that

T∩i∈I(x̄)L(hi,≥,0)(x̄) ⊂ TS(x̄).

Let d ∈ T∩i∈I(x̄)L(hi,≥,0)(x̄), then there exist tk ↓ 0 and dk → d such that x̄ +
tkdk ∈ ∩i∈I(x̄)L(hi,≥, 0). For each i /∈ I(x̄), since hi(x̄) > 0 and hi is lsc, there
exists δi > 0 such that hi(x) ≥ 0 for each x ∈ Rn with ‖x − x̄‖ < δi. Put
δ = mini/∈I(x̄) δi > 0, then hi(x) ≥ 0 for each x ∈ Rn with ‖x − x̄‖ < δ and
i /∈ I(x̄). Since x̄ + tkdk → x̄, for large enough k ∈ N, hi(x̄ + tkdk) ≥ 0 for each
i /∈ I(x̄), that is, x̄+ tkdk ∈ ∩i/∈I(x̄)L(hi,≥, 0). Thus, x̄+ tkdk ∈ S and d ∈ TS(x̄).
Hence,

TS(x̄) = T∩i∈I(x̄)L(hi,≥,0)(x̄)

= T∩i∈I(x̄)L(hi,≥,hi(x̄))(x̄)

= ∩i∈I(x̄)TL(hi,≥,hi(x̄))(x̄)
= ∩i∈I(x̄){d ∈ Rn | 〈∇hi(x̄), d〉 ≥ 0},

from Theorems 3.2 and 3.3.
(ii) From (i),

NS(x̄) = (TS(x̄))−

= (∩i∈I(x̄){d ∈ Rn | 〈∇hi(x̄), d〉 ≥ 0})−
= (∩i∈I(x̄){d ∈ Rn | 〈−∇hi(x̄), d〉 ≤ 0})−
= (∩i∈I(x̄){−∇hi(x̄)}−)−

= ((∪i∈I(x̄){−∇hi(x̄)})−)−

= cl cone co ∪i∈I(x̄) {−∇hi(x̄)}
= cone co ∪i∈I(x̄) {−∇hi(x̄)},

because cone co ∪i∈I(x̄) {−∇hi(x̄)} is a finitely generated cone.

Theorem 3.5. Let f , g : Rn → R be convex functions, hi : Rn → R, i ∈ I, be
pseudoconvex functions, S = {x ∈ Rn | hi(x) ≥ 0 for each i ∈ I} and x̄ ∈ S. If x̄
is a local minimizer of f − g in S, then for each v ∈ ∂g(x̄), there exists λ ∈ Rm

+

such that λihi(x̄) = 0 for each i ∈ I, and

v ∈ ∂f(x̄) +
∑
i∈I

λi(−∇hi(x̄)),

where Rm
+ = {λ ∈ Rm | λ1, λ2, . . . , λm ≥ 0}.

Proof. From Lemma 3.1, TS(x̄) is a convex set. By Theorem 3.4, we have ∂g(x̄) ⊂
∂f(x̄) + NS(x̄). Hence, from Lemma 3.1 again, we obtain ∂g(x̄) ⊂ ∂f(x̄) +
cone co ∪i∈I(x̄) {−∇hi(x̄)}. This implies that the conclusion holds.
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Finally, we consider the following convex programming problem with reverse
convex constraints:

minimize f(x),
subject to hi(x) ≥ 0, i ∈ I,

where I = {1, 2, . . . ,m}, f : Rn → R is a convex function and hi : Rn → R, i ∈ I,
are pseudoconvex functions.

Theorem 3.6. Let f : Rn → R be a convex function, hi : Rn → R, i ∈ I, be
pseudoconvex functions, S = {x ∈ Rn | hi(x) ≥ 0 for each i ∈ I} and x̄ ∈ S. If
x̄ is a local minimizer of f in S, then there exists λ ∈ Rm

+ such that λihi(x̄) = 0
for each i ∈ I, and

0 ∈ ∂f(x̄) +
∑
i∈I

λi(−∇hi(x̄)).

Proof. The conclusion follows from Theorem 3.5 by taking g = 0.

Example 3.2. Consider the problem:

minimize max{x1, x2},
subject to (x1 + 1)2 + x2

2 − 1 ≥ 0,
x2

1 + (x2 + 1)2 − 1 ≥ 0.

Let n = 2, I = {1, 2}, f(x) = max{x1, x2}, h1(x) = (x1 + 1)2 + x2
2 − 1, h2(x) =

x2
1 + (x2 + 1)2 − 1 and x̄ ∈ S = {x ∈ R2 | h1(x) ≥ 0, h2(x) ≥ 0}. Then f

is a convex function and h1, h2 are differentiable convex functions. Let x̄ be a
local minimizer of f in S. By Theorem 3.6, there exist λ1, λ2 ≥ 0 such that
0 ∈ ∂f(x̄) + λ1(−2(x̄1 + 1),−2x̄2) + λ2(−2x̄1,−2(x̄2 + 1)), λ1h1(x̄) = 0 and
λ2h2(x̄) = 0. When λ1 = λ2 = 0, 0 ∈ ∪x∈S∂f(x) = co {(1, 0), (0, 1)}. But
this does not hold. When λ1 > 0 and λ2 = 0, x̄1 ≤ x̄2 because h1(x̄) = 0 and
h2(x̄) ≥ 0. If x̄1 = x̄2, then x̄ must be (0, 0). If x̄1 < x̄2, then x̄ must be (−1, 1).
Similarly, when λ1 = 0 and λ2 > 0, we have x̄ = (0, 0), (1,−1). When λ1, λ2 > 0,
x̄ must be (0, 0). Therefore (0, 0), (1,−1) and (−1, 1) have possibilities for local
minimizers, and actually, (0, 0) is a local minimizer and (1,−1), (−1, 1) are not
local minimizers.

3.3 Global optimality conditions

In this section, we consider a necessary and sufficient global optimality condition
for DC programming problems with reverse convex constraints.

Lemma 3.2. Let A be a closed convex cone of Rn, x̄ ∈ Rn and ε ≥ 0. Then

Nε(x̄+ A, x̄) = N(x̄+A)(x̄).
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Proof. It is clear that N(x̄+A)(x̄) = A−. Therefore it is sufficient to show that
Nε(x̄ + A, x̄) = A−. Let x∗ ∈ Nε(x̄ + A, x̄) and x ∈ A. For each λ > 0, since
x̄+ λx ∈ x̄+ A,

λ 〈x∗, x〉 = 〈x∗, x̄+ λx− x̄〉 ≤ ε,

that is, 〈x∗, x〉 ≤ ε/λ. Letting λ → ∞, 〈x∗, x〉 ≤ 0 and thus x∗ ∈ A−. Hence we
have Nε(x̄+A, x̄) ⊂ A−. Also, the converse inclusion is satisfied since N(x̄+A)(x̄) ⊂
Nε(x̄+ A, x̄). This completes the proof.

In the following theorem, we give a necessary global optimality condition for
DC programming problems with reverse convex constraints.

Theorem 3.7. Let f , g : Rn → R be convex functions, hi : Rn → R, i ∈ I, be
pseudoconvex functions, S = {x ∈ Rn | hi(x) ≥ 0 for each i ∈ I} and x̄ ∈ S.
Assume that ∪i/∈I(x̄){∇hi(x̄)} ⊂ TS(x̄)+. If x̄ is a minimizer of f − g in S, then
for each ε ≥ 0 and v ∈ ∂εg(x̄), there exists λ ∈ Rm

+ such that λihi(x̄) = 0 for each
i ∈ I, and

v ∈ ∂εf(x̄) +
∑
i∈I

λi(−∇hi(x̄)).

Proof. We first prove that x̄ + TS(x̄) ⊂ S. Let x ∈ x̄ + TS(x̄). Since Lemma 3.1
and ∪i/∈I(x̄){∇hi(x̄)} ⊂ TS(x̄)+, 〈∇hi(x̄), x− x̄〉 ≥ 0 for each i ∈ I. For each
i ∈ I, by the pseudoconvexity of hi, hi(x) ≥ hi(x̄) ≥ 0, and thus x ∈ S. Assume
that x̄ is a minimizer of f − g in S. Then x̄ is a minimizer of f − g in x̄+ TS(x̄),
that is, x̄ is a minimizer of

(
f + δ(x̄+TS(x̄))

)
− g in Rn. From Theorem 1.3, for

each ε ≥ 0,
∂εg(x̄) ⊂ ∂ε

(
f + δ(x̄+TS(x̄))

)
(x̄).

It follows from [17, Theorem 2.8.7] that

∂ε
(
f + δ(x̄+TS(x̄))

)
(x̄) = ∪δ∈[0,ε](∂δf(x̄) +N(ε−δ)(x̄+ TS(x̄), x̄)).

By Lemma 3.2,

∪δ∈[0,ε](∂δf(x̄) +N(ε−δ)(x̄+ TS(x̄), x̄)) = ∪δ∈[0,ε]∂δf(x̄) +N(x̄+TS(x̄))(x̄)
= ∂εf(x̄) +NS(x̄),

and by Lemma 3.1,

∂εf(x̄) +NS(x̄) = ∂εf(x̄) + cone co ∪i∈I(x̄) {−∇hi(x̄)}.

Hence, we have

∂εg(x̄) ⊂ ∂εf(x̄) + cone co ∪i∈I(x̄) {−∇hi(x̄)}.

This implies that the conclusion holds.
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In the following theorem, we establish that the necessary global optimality
condition of the above theorem is also sufficient.

Theorem 3.8. Let hi : Rn → R, i ∈ I, be pseudoconvex functions, S = {x ∈
Rn | hi(x) ≥ 0 for each i ∈ I} and x̄ ∈ S. Then the following statements are
equivalent:

(i) S ⊂ x̄+ TS(x̄).

(ii) For each convex functions f , g : Rn → R, assume that for each ε ≥ 0 and
v ∈ ∂εg(x̄), there exists λ ∈ Rm

+ such that λihi(x̄) = 0 for each i ∈ I, and

v ∈ ∂εf(x̄) +
∑
i∈I

λi(−∇hi(x̄)).

Then x̄ is a minimizer of f − g in S.

Proof. First, we prove that (i) implies (ii). Assume that (i) holds. In addition,
let f and g be convex functions from Rn to R and suppose that for each ε ≥ 0
and v ∈ ∂εg(x̄), there exists λ ∈ Rm

+ such that λihi(x̄) = 0 for each i ∈ I, and

v ∈ ∂εf(x̄) +
∑
i∈I

λi(−∇hi(x̄)).

Since
v +

∑
i∈I(x̄)

λi∇hi(x̄) ∈ ∂εf(x̄),

for each x ∈ x̄+ TS(x̄),

f(x) ≥ f(x̄) + 〈v, x− x̄〉+
∑

i∈I(x̄) λi 〈∇hi(x̄), x− x̄〉 − ε
≥ f(x̄) + 〈v, x− x̄〉 − ε,

from Lemma 3.1. Therefore, for each x ∈ Rn,(
f + δ(x̄+TS(x̄))

)
(x) ≥

(
f + δ(x̄+TS(x̄))

)
(x̄) + 〈v, x− x̄〉 − ε,

that is, v ∈ ∂ε
(
f + δ(x̄+TS(x̄))

)
(x̄). Thus, we have

∂εg(x̄) ⊂ ∂ε
(
f + δ(x̄+TS(x̄))

)
(x̄).

From Theorem 1.3, x̄ is a minimizer of
(
f + δ(x̄+TS(x̄))

)
− g in Rn, that is, x̄ is a

minimizer of f − g in x̄+ TS(x̄). Hence, the conclusion follows from (i).
Next, we prove that (ii) implies (i). Assume that (ii) holds and let i ∈ I(x̄).

Put f = 〈∇hi(x̄), ·〉 and g = 0, then f and g are convex functions. For each ε ≥ 0
and v ∈ ∂εg(x̄), put

λj =

{
1 j = i,
0 j 6= i,



Optimality conditions for nonlinear and nonconvex programming problems 18

then λ ∈ Rm
+ and we have λjhj(x̄) = 0 for each j ∈ I. Also,

v +
∑
j∈I

λj∇hj(x̄) = ∇hi(x̄) ∈ ∂εf(x̄),

that is,

v ∈ ∂εf(x̄) +
∑
j∈I

λj(−∇hj(x̄)).

Therefore, x̄ is a minimizer of f − g in S from (ii). Since 〈∇hi(x̄), x− x̄〉 ≥ 0 for
each x ∈ S, S ⊂ x̄+ {d ∈ Rn | 〈∇hi(x̄), d〉 ≥ 0}. Hence S ⊂ x̄+ ∩i∈I(x̄){d ∈ Rn |
〈∇hi(x̄), d〉 ≥ 0} and the conclusion follows from Lemma 3.1. This completes the
proof.

This theorem shows that the condition (i) of this theorem is necessary and
sufficient for sufficient global optimality conditions in DC programming problems
with reverse convex constraints, that is, the optimality condition of this theorem
is derived for each DC objective function whenever the condition (i) holds, but
the optimality condition is not derived for some DC objective function whenever
the condition (i) does not hold. Therefore it is important whether the condition
(i) holds or not. Let us see the following two examples.

Example 3.3. Let hi(x) = qi(〈a∗i , x〉), i ∈ I, where a∗i ∈ Rn and qi : R → R
is a nondecreasing differentiable function such that infy∈R qi(y) < qi(x) implies
q′i(x) > 0. Also, let S = {x ∈ Rn | qi(〈a∗i , x〉) ≥ 0 for each i ∈ I} and x̄ ∈
S. Then hi, i ∈ I, are pseudoconvex functions and TS(x̄) = ∩i∈I(x̄){d ∈ Rn |
q′i(〈a∗i , x̄〉) 〈a∗i , d〉 ≥ 0}. Since

x̄+ TS(x̄) = ∩i∈I(x̄){x ∈ Rn | q′i(〈a∗i , x̄〉) 〈a∗i , x− x̄〉 ≥ 0}
= ∩i∈I(x̄){x ∈ Rn | qi(〈a∗i , x〉) ≥ qi(〈a∗i , x̄〉)}
= ∩i∈I(x̄){x ∈ Rn | qi(〈a∗i , x〉) ≥ 0},

the condition (i) of Theorem 3.8 holds. Thus for each convex functions f , g :
Rn → R, it is possible to characterize a sufficient condition for global optimality
for the following problem by using Theorem 3.8,

minimize f(x)− g(x),
subject to hi(x) ≥ 0, i ∈ I.

Example 3.4. Let n = 2, I = {1}, h1(x) = x1 + x2
2, S = {x ∈ R2 | h1(x) ≥ 0}

and x̄ = (0, 0). Then h1 is a differentiable convex function. Since TS(x̄) = {x ∈
R2 | x1 ≥ 0}, the condition (i) of Theorem 3.8 does not hold. Thus for some
convex functions f , g : R2 → R, it is impossible to characterize a sufficient
condition for global optimality for the following problem by using Theorem 3.8,

minimize f(x)− g(x),
subject to h1(x) ≥ 0.
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Actually, let f(x) = x1 and g(x) = 0. Let ε ≥ 0 and v ∈ ∂εg(x̄). Put λ1 = 1, then
we have that λ1h1(x̄) = 0 and v = 0 = (1, 0)+1(−(1, 0)) ∈ ∂εf(x̄)+λ1(−∇h1(x̄)).
However, x̄ is not a minimizer of f − g in S.

In the following theorem, we obtain a sufficient global optimality condition
for convex programming problems with reverse convex constraints.

Theorem 3.9. Let hi : Rn → R, i ∈ I, be pseudoconvex functions, S = {x ∈
Rn | hi(x) ≥ 0 for each i ∈ I} and x̄ ∈ S. Then the following statements are
equivalent:

(i) S ⊂ x̄+ TS(x̄).

(ii) For each convex function f : Rn → R, assume that there exists λ ∈ Rm
+

such that λihi(x̄) = 0 for each i ∈ I, and

0 ∈ ∂f(x̄) +
∑
i∈I

λi(−∇hi(x̄)).

Then x̄ is a minimizer of f in S.

Proof. We first prove that (i) implies (ii). Assume that (i) holds. In addition, let
f be a convex function from Rn to R and suppose that there exists λ ∈ Rm

+ such
that λihi(x̄) = 0 for each i ∈ I, and

0 ∈ ∂f(x̄) +
∑
i∈I

λi(−∇hi(x̄)).

Put g = 0, then g is a convex function. For each ε ≥ 0 and v ∈ ∂εg(x̄),

v = 0 ∈ ∂f(x̄) +
∑

i∈I λi(−∇hi(x̄))
⊂ ∂εf(x̄) +

∑
i∈I λi(−∇hi(x̄)).

Thus the conclusion follows from (i) and Theorem 3.8. Also, it is clear that (ii)
implies (i). This completes the proof.

3.4 Applications

In this section, we apply the results of the previous sections to DC programming
problems and fractional programming problems. Recall that a function h is poly-
hedral convex if it can be written as h = maxj∈J(〈a∗j , ·〉 + bj) for some finite set
J , a∗j ∈ Rn and bj ∈ R.

First, we consider the following DC programming problem:

minimize f(x)− g(x),
subject to fi(x)− gi(x) ≤ 0, i ∈ I,

where I = {1, 2, . . . ,m}, f , g : Rn → R are convex functions, fi : Rn → R, i ∈ I,
are polyhedral convex functions and gi : Rn → R, i ∈ I, are differentiable convex
functions.
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Theorem 3.10. Let f , g : Rn → R be convex functions, fi : Rn → R, i ∈ I, be
polyhedral convex functions such that fi = maxj∈Ji(〈a∗(i,j), ·〉 + b(i,j)), gi : Rn →
R, i ∈ I, be differentiable convex functions, S = {x ∈ Rn | fi(x) − gi(x) ≤
0 for each i ∈ I} and x̄ ∈ S. If x̄ is a local minimizer of f − g in S, then for each

v ∈ ∂g(x̄), there exists λ ∈ R|T |+ such that λt (〈a∗t , x̄〉+ bt − gi(x̄)) = 0 for each
t ∈ T , and

v ∈ ∂f(x̄) +
∑
t∈T

λt(a
∗
t −∇gi(x̄)).

where T = {t = (i, j) | i ∈ I, j ∈ Ji}, the cardinality of T is denoted by |T | and

R|T |+ = {λ ∈ R|T | | λt ≥ 0 for each t ∈ T}.

Proof.

S = {x ∈ Rn | maxj∈Ji(〈a∗(i,j), x〉+ b(i,j))− gi(x) ≤ 0 for each i ∈ I}
= {x ∈ Rn | 〈a∗(i,j), x〉+ b(i,j) − gi(x) ≤ 0 for each i ∈ I, j ∈ Ji}
= {x ∈ Rn | gi(x)− (〈a∗t , x〉+ bt) ≥ 0 for each t ∈ T} .

For each t = (i, j) ∈ T , put ht = gi − (〈a∗t , ·〉+ bt). Then, ht is a differentiable
convex function and ∇ht(x̄) = ∇gi(x̄) − a∗t . Thus the conclusion follows from
Theorem 3.5.

Theorem 3.11. Let fi : Rn → R, i ∈ I, be polyhedral convex functions such
that fi = maxj∈Ji(〈a∗(i,j), ·〉 + b(i,j)), gi : Rn → R, i ∈ I, be differentiable convex

functions, S = {x ∈ Rn | fi(x)− gi(x) ≤ 0 for each i ∈ I} and x̄ ∈ S. Then the
following statements are equivalent:

(i) S ⊂ x̄+ TS(x̄).

(ii) For each convex functions f , g : Rn → R, assume that for each ε ≥ 0 and

v ∈ ∂εg(x̄), there exists λ ∈ R|T |+ such that λt
(
〈a∗t , x̄〉 + bt − gi(x̄)

)
= 0 for

each t ∈ T , and

v ∈ ∂εf(x̄) +
∑
t∈T

λt(a
∗
t −∇gi(x̄)).

Then x̄ is a minimizer of f − g in S.

Proof. The proof follows from Theorem 3.8 and the arguments of Theorem 3.10.

Next, we consider the following fractional programming problem:

minimize f(x)/g(x),
subject to fi(x)/gi(x) ≤ ci, i ∈ I,

where I = {1, 2, . . . ,m}, f , g : Rn → R are convex functions, fi : Rn → R,
i ∈ I, are polyhedral convex functions, gi : Rn → R, i ∈ I, are differentiable
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convex functions such that gi > 0 and ci ≥ 0, i ∈ I. Also, g is positive on the
constraint set. We investigate the above problem by using an approach due to
Dinkelbach [1].

Theorem 3.12. Let f , g : Rn → R be convex functions, fi : Rn → R, i ∈ I, be
polyhedral convex functions such that fi = maxj∈Ji(〈a∗(i,j), ·〉 + b(i,j)), gi : Rn →
R, i ∈ I, be differentiable convex functions such that gi > 0, ci ≥ 0, i ∈ I,
S = {x ∈ Rn | fi(x)/gi(x) ≤ ci for each i ∈ I} and x̄ ∈ S. Assume that f(x̄) ≥ 0
and g(x) > 0 for each x ∈ S. If x̄ is a local minimizer of f/g in S, then for each

v ∈ λ0∂g(x̄), there exists λ ∈ R|T |+ such that λt (〈a∗t , x̄〉+ bt − cigi(x̄)) = 0 for
each t ∈ T , and

v ∈ ∂f(x̄) +
∑
t∈T

λt(a
∗
t − ci∇gi(x̄)),

where λ0 = f(x̄)/g(x̄).

Proof. We can verify that if x̄ is a local minimizer of f/g in S, then x̄ is a local
minimizer of f − λ0g in S. Further,

S = {x ∈ Rn | fi(x) ≤ cigi(x) for each i ∈ I}
= {x ∈ Rn | fi(x)− cigi(x) ≤ 0 for each i ∈ I}.

Hence, the conclusion follows from Theorem 3.10 because λ0g is convex and cigi,
i ∈ I, are differentiable convex.

Theorem 3.13. Let fi : Rn → R, i ∈ I, be polyhedral convex functions such
that fi = maxj∈Ji(〈a∗(i,j), ·〉 + b(i,j)), gi : Rn → R, i ∈ I, be differentiable con-

vex functions such that gi > 0, ci ≥ 0, i ∈ I, S = {x ∈ Rn | fi(x)/gi(x) ≤
ci for each i ∈ I} and x̄ ∈ S. Then the following statements are equivalent:

(i) S ⊂ x̄+ TS(x̄).

(ii) For each convex functions f , g : Rn → R such that f(x̄) ≥ 0 and g(x) >
0 for each x ∈ S, assume that for each ε ≥ 0 and v ∈ ∂ε(λ0g)(x̄), there

exists λ ∈ R|T |+ such that λt (〈a∗t , x̄〉+ bt − cigi(x̄)) = 0 for each t ∈ T , and

v ∈ ∂εf(x̄) +
∑
t∈T

λt(a
∗
t − ci∇gi(x̄)).

Then x̄ is a minimizer of f/g in S.

Proof. First, we prove that (i) implies (ii). Assume that (i) holds. In addition,
let f and g be convex functions from Rn to R such that f(x̄) ≥ 0 and g(x) >
0 for each x ∈ S, and suppose that for each ε ≥ 0 and v ∈ ∂ε(λ0g)(x̄), there exists

λ ∈ R|T |+ such that λt (〈a∗t , x̄〉+ bt − cigi(x̄)) = 0 for each t ∈ T , and

v ∈ ∂εf(x̄) +
∑
t∈T

λt(a
∗
t − ci∇gi(x̄)).
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From Theorem 3.11 and (i), we have x̄ is a minimizer of f − λ0g in S. Hence the
conclusion follows from the definition of λ0.

Next, we prove that (ii) implies (i). Assume that (ii) holds. Put T (x̄) =
{t = (i, j) ∈ T | cigi(x̄)− (〈a∗t , x̄〉+ bt) = 0} and let t = (i, j) ∈ T (x̄). Put f =
〈ci∇gi(x̄)− a∗t , · − x̄〉 and g = 1, then f and g are convex functions, f(x̄) ≥ 0
and g(x) > 0 for each x ∈ S. For each ε ≥ 0 and v ∈ ∂εg(x̄), put

λ(r,s) =

{
1 (r, s) = t,
0 (r, s) 6= t,

then λ ∈ R|T |+ and we have λ(r,s)(〈a∗(r,s), x̄〉+b(r,s)−crgr(x̄)) = 0 for each (r, s) ∈ T .
Also,

v +
∑

(r,s)∈T

λ(r,s)(cr∇gr(x̄)− a∗(r,s)) = ci∇gi(x̄)− a∗t ∈ ∂εf(x̄),

that is,

v ∈ ∂εf(x̄) +
∑

(r,s)∈T

λ(r,s)(a
∗
(r,s) − cr∇gr(x̄)).

Therefore, x̄ is a minimizer of f/g in S from (ii). Since
〈
ci∇gi(x̄) − a∗t , x −

x̄
〉
≥ 0 for each x ∈ S, S ⊂ x̄ + {d ∈ Rn | 〈ci∇gi(x̄)− a∗t , d〉 ≥ 0}. Thus

S ⊂ x̄ + ∩t∈T (x̄) {d ∈ Rn | 〈ci∇gi(x̄)− a∗t , d〉 ≥ 0}. For each t = (i, j) ∈ T ,
put ht = cigi − (〈a∗t , ·〉+ bt), then ht is differentiable convex and ∇ht(x̄) =
ci∇gi(x̄) − a∗t . Since S = {x ∈ Rn | ht(x) ≥ 0 for each t ∈ T} and S ⊂ x̄ +
∩t∈T (x̄) {d ∈ Rn | 〈∇ht(x̄), d〉 ≥ 0}, the conclusion follows from Lemma 3.1. This
completes the proof.

Remark 3.1. When we consider fractional programming problems, we often add
the assumption such as f is nonnegative and g is positive on the constraint set
to a objective function f/g, for example, see [11, 20]. From Theorem 3.13, we
notice that the assumption of f is strong to obtain these results and assumption
f(x̄) ≥ 0 is enough.



Chapter 4

ε-Optimality for DC
programming

In this chapter, we investigate a constraint qualification for ε-optimality condi-
tions in DC programming problems with convex inequality constraints. Through-
out this chapter, let X be a real locally convex Hausdorff topological vector space,
and we consider mathematical programming problems under the following con-
straint set:

S = {x ∈ X | hi(x) ≤ 0 for each i ∈ I},

where I is an arbitrary index set and hi : X → R ∪ {+∞}, i ∈ I, are lsc proper
convex functions. This chapter is based on [34].

We introduce the notions of the conical epigraph hull property (conical EHP
for short, see [28]) and Farkas-Minkowski (FM for short, see [26]) that are con-
straint qualifications for optimality conditions and duality in convex programming
problems, respectively.

Definition 4.1 ([26, 28]). Let {hi | i ∈ I} be a family of lsc proper convex
functions from X to R ∪ {+∞}. The family {hi | i ∈ I} is said to satisfy

(i) the conical EHP if

epi δ∗S = cone co
⋃
i∈I

epih∗i ,

where S 6= ∅;

(ii) FM if

cone co
⋃
i∈I

epih∗i + {0} × [0,+∞)

is weak∗-closed.

The following characterization of the conical EHP was proved in [28].

23
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Theorem 4.1 ([28]). Let {hi | i ∈ I} be a family of lsc proper convex functions
from X to R ∪ {+∞}, and S 6= ∅. Then the family {hi | i ∈ I} satisfies the
conical EHP if and only if

cone co
⋃
i∈I

epih∗i

is weak∗-closed.

Remark 4.1. By Theorem 4.1, it can be verified that the family {hi | i ∈ I}
satisfies FM if and only if the family {0, hi | i ∈ I} satisfies the conical EHP
(see [28]).

4.1 Characterizations of the conical EHP and

FM

In this section, we provide characterizations of the conical EHP and FM by using
ε-subdifferentials and ε-normal cones.

Theorem 4.2. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies the conical EHP.

(ii) For each x ∈ S and ε ≥ 0,

Nε(S, x) =
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x))=ε

∑
i∈I

λi∂µihi(x).

(iii) For each ε ≥ 0,

Nε(S, x̄) =
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x̄))=ε

∑
i∈I

λi∂µihi(x̄),

where RI
+ is the set of nonnegative real tuples λ = (λi)i∈I , and R(I)

+ is the set of
an element λ = (λi)i∈I ∈ RI

+ with only finitely many λi 6= 0.

Proof. First, we prove (i) implies (ii). Assume that (i) holds. Let x ∈ S and ε ≥ 0.
Take x∗ ∈ Nε(S, x). Then we have δ∗S(x∗) ≤ 〈x∗, x〉+ ε, that is, (x∗, 〈x∗, x〉+ ε) ∈
epi δ∗S. Since the assumption (i) holds, we obtain

(x∗, 〈x∗, x〉+ ε) ∈ cone co
⋃
i∈I

epih∗i .
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Thus, there exist λ̄ ∈ R(I)
+ and (x∗i , αi) ∈ epih∗i , i ∈ I, such that

(x∗, 〈x∗, x〉+ ε) =
∑
i∈I

λ̄i(x
∗
i , αi).

By Theorem 1.1, there exist µ̄i ≥ 0, i ∈ I, such that for each i ∈ I, x∗i ∈ ∂µ̄ihi(x)
and αi = µ̄i − hi(x) + 〈x∗i , x〉. Since∑

i∈I

λ̄i(µ̄i − hi(x)) =
∑
i∈I

λ̄i(αi − 〈x∗i , x〉) = 〈x∗, x〉+ ε− 〈x∗, x〉 = ε,

we have

x∗ =
∑
i∈I

λ̄ix
∗
i ∈

∑
i∈I

λ̄i∂µ̄ihi(x) ⊂
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x))=ε

∑
i∈I

λi∂µihi(x),

and hence the following inclusion holds:

Nε(S, x) ⊂
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x))=ε

∑
i∈I

λi∂µihi(x).

Conversely, let λ ∈ R(I)
+ and µ ∈ RI

+ such that
∑

i∈I λi(µi − hi(x)) = ε, and
take x∗ ∈

∑
i∈I λi∂µihi(x). Then there exist x∗i ∈ ∂µihi(x), i ∈ I, such that

x∗ =
∑

i∈I λix
∗
i . Let y ∈ S. Since

〈x∗, y − x〉 =
∑
i∈I
λi 〈x∗i , y − x〉

≤
∑
i∈I
λi(hi(y)− hi(x) + µi)

≤
∑
i∈I
λi(µi − hi(x)) = ε,

we obtain x∗ ∈ Nε(S, x). Thus we have⋃
λ∈R(I)

+ , µ∈RI+∑
i∈I λi(µi−hi(x))=ε

∑
i∈I

λi∂µihi(x) ⊂ Nε(S, x),

and hence (ii) holds.
Next, it is clear that (ii) implies (iii) by setting x = x̄ in the assumption (ii).
Finally, we prove (iii) implies (i). Assume that (iii) holds and take (x∗, α) ∈

epi δ∗S. let y ∈ S. Since

〈x∗, y − x̄〉 ≤ δ∗S(x∗)− 〈x∗, x̄〉 ≤ α− 〈x∗, x̄〉 ,
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we obtain x∗ ∈ Nα−〈x∗,x̄〉(S, x̄). By setting ε = α−〈x∗, x̄〉 in the assumption (iii),

there exist λ ∈ R(I)
+ , µ ∈ RI

+ and x∗i ∈ ∂µihi(x̄), i ∈ I, such that

x∗ =
∑
i∈I

λix
∗
i and

∑
i∈I

λi(µi − hi(x̄)) = α− 〈x∗, x̄〉 .

Since

α =
∑
i∈I

λi(µi − hi(x̄)) + 〈x∗, x̄〉 =
∑
i∈I

λi(µi − hi(x̄) + 〈x∗i , x̄〉),

it follows from Theorem 1.1 that

(x∗, α) =
∑
i∈I

λi(x
∗
i , µi − hi(x̄) + 〈x∗i , x̄〉) ∈

∑
i∈I

λiepih∗i ⊂ cone co
⋃
i∈I

epih∗i .

Hence we have
epi δ∗S ⊂ cone co

⋃
i∈I

epih∗i .

Since the converse inclusion is always satisfied, (i) holds. This completes the
proof.

Corollary 4.1. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies FM.

(ii) For each x ∈ S and ε ≥ 0,

Nε(S, x) =
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x))≤ε

∑
i∈I

λi∂µihi(x).

(iii) For each ε ≥ 0,

Nε(S, x̄) =
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x̄))≤ε

∑
i∈I

λi∂µihi(x̄).

Proof. Consider the family {0, hi | i ∈ I}. Then

{x ∈ X | 0(x) ≤ 0, hi(x) ≤ 0 for each i ∈ I} = S.

By Theorem 4.2, the following statements are equivalent:

(a) The family {0, hi | i ∈ I} satisfies the conical EHP.



Optimality conditions for nonlinear and nonconvex programming problems 27

(b) For each x ∈ S and ε ≥ 0,

Nε(S, x) =
⋃

λ′,µ′≥0, λ∈R(I)
+ , µ∈RI+

λ′(µ′−0(x))+
∑
i∈I λi(µi−hi(x))=ε

(λ′∂µ′0(x) +
∑
i∈I

λi∂µihi(x)).

(c) For each ε ≥ 0,

Nε(S, x̄) =
⋃

λ′,µ′≥0, λ∈R(I)
+ , µ∈RI+

λ′(µ′−0(x̄))+
∑
i∈I λi(µi−hi(x̄))=ε

(λ′∂µ′0(x̄) +
∑
i∈I

λi∂µihi(x̄)).

Hence, the conclusion follows from Remark 4.1.

Remark 4.2. In [29], the equivalence between (i) and (ii) in Corollary 4.1 was
shown, but the equivalence between (i) and (iii) was not. In the next section, the
equivalence between (i) and (iii) in this corollary plays a key role.

4.2 Results of DC programming

In this section, we consider the following DC programming problem:

minimize f(x)− g(x),
subject to hi(x) ≤ 0, i ∈ I,

where f : X → R∪ {+∞} is a lsc proper convex function and g : X → R is a lsc
convex function.

Theorem 4.3. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies FM.

(ii) For each lsc proper convex function f : X → R∪ {+∞} such that dom f ∩
S 6= ∅ and epi f ∗ + epi δ∗S is weak∗-closed, lsc convex function g : X → R
and ε ≥ 0, x̄ is an ε-minimizer of f − g in S if and only if for each α ≥ 0
and v ∈ ∂αg(x̄), there exist β, γ ≥ 0, λ ∈ R(I)

+ and µ ∈ RI
+ such that

β + γ = α + ε,
∑

i∈I λi(µi − hi(x̄)) ≤ γ, and

v ∈ ∂βf(x̄) +
∑
i∈I

λi∂µihi(x̄).
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Proof. First, we prove (i) implies (ii). Assume that (i) holds. Let f be a lsc
proper convex function from X to R ∪ {+∞} such that dom f ∩ S 6= ∅ and
epi f ∗ + epi δ∗S is weak∗-closed, g a lsc convex function from X to R and ε ≥ 0.
The point x̄ is an ε-minimizer of f − g in S if and only if x̄ is an ε-minimizer of
(f + δS)− g in X. From Theorem 1.3, x̄ is an ε-minimizer of (f + δS)− g in X
if and only if for each α ≥ 0,

∂αg(x̄) ⊂ ∂α+ε(f + δS)(x̄).

By Theorem 1.2, we have that for each α ≥ 0,

∂α+ε(f + δS)(x̄) =
⋃
β,γ≥0

β+γ=α+ε

(∂βf(x̄) + ∂γδS(x̄)).

Since the assumption (i) holds, it follows from Corollary 4.1 that for each γ ≥ 0,

∂γδS(x̄) = Nγ(S, x̄) =
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x̄))≤γ

∑
i∈I

λi∂µihi(x̄).

Hence, x̄ is an ε-minimizer of f − g in S if and only if for each α ≥ 0,

∂αg(x̄) ⊂
⋃
β,γ≥0

β+γ=α+ε

(∂βf(x̄) +
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x̄))≤γ

∑
i∈I

λi∂µihi(x̄)).

This implies that (ii) holds.
Next, we prove (ii) implies (i). Assume that (ii) holds. By Corollary 4.1, it is

sufficient to show that for each ε ≥ 0,

Nε(S, x̄) =
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x̄))≤ε

∑
i∈I

λi∂µihi(x̄).

Let ε ≥ 0. Take x∗ ∈ Nε(S, x̄). Then x̄ is an ε-minimizer of −x∗ in S. By setting

f = −x∗, g = 0 and α = 0 in the assumption (ii), there exist β, γ ≥ 0, λ̄ ∈ R(I)
+

and µ̄ ∈ RI
+ such that β + γ = ε,

∑
i∈I λ̄i(µ̄i − hi(x̄)) ≤ γ, and

0 ∈ −x∗ +
∑
i∈I

λ̄i∂µ̄ihi(x̄).

Since ∑
i∈I

λ̄i(µ̄i − hi(x̄)) ≤ γ ≤ β + γ = ε,
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we have
x∗ ∈

∑
i∈I

λ̄i∂µ̄ihi(x̄) ⊂
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x̄))≤ε

∑
i∈I

λi∂µihi(x̄),

and hence the following inclusion holds:

Nε(S, x̄) ⊂
⋃

λ∈R(I)
+ , µ∈RI+∑

i∈I λi(µi−hi(x̄))≤ε

∑
i∈I

λi∂µihi(x̄).

Also, by the arguments of Theorem 4.2, it can be verified that the converse
inclusion holds. This completes the proof.

This theorem shows that FM is a necessary and sufficient constraint quali-
fication for ε-optimality conditions in DC programming problems with convex
inequality constraints.

Corollary 4.2. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, x̄ ∈ S, f : X → R ∪ {+∞} a lsc proper convex function such
that dom f ∩ S 6= ∅ and epi f ∗ + epi δ∗S is weak∗-closed, and g : X → R a lsc
convex function. Assume that the family {hi | i ∈ I} satisfies FM. Then x̄ is a
minimizer of f − g in S if and only if for each α ≥ 0 and v ∈ ∂αg(x̄), there exist

β, γ ≥ 0, λ ∈ R(I)
+ and µ ∈ RI

+ such that β+γ = α,
∑

i∈I λi(µi−hi(x̄)) ≤ γ, and

v ∈ ∂βf(x̄) +
∑
i∈I

λi∂µihi(x̄).

Proof. The proof follows from Theorem 4.3 by setting ε = 0.

Example 4.1. Consider the problem:

minimize 1
4
x4 + |x| − x2,

subject to max{0,−x} ≤ 0.

Let X = R, I = {1}, f(x) = 1
4
x4 + |x|, g(x) = x2, h1(x) = max{0,−x} and

x̄ ∈ S = [0,+∞). In Example 2.1, we have already seen that 0, 1 and −1+
√

5
2

have
possibilities for local minimizers. We now find minimizers of f − g in S. We can
check that {hi | i ∈ I} satisfies FM. Let α ≥ 0 and v ∈ ∂αg(0) = [−2

√
α, 2
√
α].

Take β ≥ 0 such that β ≤ α and 2
√
α ≤ (4

3
β)

3
4 + 1, and put γ = α − β and

λ1 = µ1 = 0. Then β + γ = α and λ1(µ1 − h1(0)) ≤ γ. Moreover, we have

v ∈
[
−2
√
α, 2
√
α
]
⊂
[
−(

4

3
β)

3
4 −1, (

4

3
β)

3
4 +1

]
+0
[
−1, 0

]
= ∂βf(0)+λ1∂µ1h1(0).

By Corollary 4.2, 0 is a minimizer. However, since f(0)−g(0) = 0, f(1)−g(1) = 1
4

and f(−1+
√

5
2

)− g(−1+
√

5
2

) = −9+5
√

5
8

, 1 and −1+
√

5
2

are not minimizers.
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4.3 Results of fractional programming

In this section, we consider the following fractional programming problem:

minimize f(x)/g(x),
subject to hi(x) ≤ 0, i ∈ I,

where f : X → R∪ {+∞} is a lsc proper convex function and g : X → R is a lsc
convex function such that g is positive on S.

Theorem 4.4. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, and x̄ ∈ S. Then the following statements are equivalent:

(i) The family {hi | i ∈ I} satisfies FM.

(ii) For each lsc proper convex function f : X → R∪{+∞}, lsc convex function
g : X → R and ε ≥ 0 such that dom f ∩ S 6= ∅, epi f ∗ + epi δ∗S is weak∗-
closed, g is positive on S and νε ≥ 0, x̄ is an ε-minimizer of f/g in S if and

only if for each α ≥ 0 and v ∈ ∂α(νεg)(x̄), there exist β, γ ≥ 0, λ ∈ R(I)
+

and µ ∈ RI
+ such that β + γ = α + εg(x̄),

∑
i∈I λi(µi − hi(x̄)) ≤ γ, and

v ∈ ∂βf(x̄) +
∑
i∈I

λi∂µihi(x̄),

where νε = f(x̄)/g(x̄)− ε.

Proof. We first prove (i) implies (ii). Assume that (i) holds. Let f be a lsc proper
convex function from X to R ∪ {+∞}, g a lsc convex function from X to R and
ε ≥ 0 such that dom f ∩ S 6= ∅, epi f ∗ + epi δ∗S is weak∗-closed, g is positive on
S and νε ≥ 0. Then it can be verified that x̄ is an ε-minimizer of f/g in S
if and only if x̄ is an εg(x̄)-minimizer of f − νεg in S. Thus, (ii) follows from
Theorem 4.3. Also, it is clear that (ii) implies (i) by setting f = −x∗+〈x∗, x̄〉+ε,
g = 1 and α = 0 in the assumption (ii). This completes the proof.

This theorem shows that FM is also a necessary and sufficient constraint
qualification for ε-optimality conditions in fractional programming problems with
convex inequality constraints.

Corollary 4.3. Let {hi | i ∈ I} be a family of lsc proper convex functions from
X to R ∪ {+∞}, x̄ ∈ S, f : X → R ∪ {+∞} a lsc proper convex function and
g : X → R a lsc convex function such that dom f ∩ S 6= ∅, epi f ∗ + epi δ∗S is
weak∗-closed, g is positive on S and ν0 ≥ 0. Assume that the family {hi | i ∈ I}
satisfies FM. Then x̄ is a minimizer of f/g in S if and only if for each α ≥ 0 and

v ∈ ∂α(ν0g)(x̄), there exist β, γ ≥ 0, λ ∈ R(I)
+ and µ ∈ RI

+ such that β + γ = α,∑
i∈I λi(µi − hi(x̄)) ≤ γ, and

v ∈ ∂βf(x̄) +
∑
i∈I

λi∂µihi(x̄).
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Proof. The proof follows from Theorem 4.4 by setting ε = 0.



Chapter 5

Optimality for differentiable
programming

In this chapter, we consider a constraint qualification for sufficient optimality
conditions in differentiable programming. Throughout this chapter, let gi, i ∈
I = {1, 2, . . . ,m}, be functions from Rn to R,

S = {x ∈ Rn : gi(x) ≤ 0 for each i ∈ I}

and
I(x) = {i ∈ I : gi(x) = 0}

for each x ∈ S. We consider the following mathematical programming problem:

minimize f(x),
subject to gi(x) ≤ 0, i ∈ I,

where f is a function from Rn to R. This chapter is based on [35].
The following theorem shows that the assumption of quasiconvexity at a point

of gi is a constraint qualification for sufficient optimality conditions in a differ-
entiable programming problem whose objective function f is pseudoconvex at a
point, see [16].

Theorem 5.1. Let f : Rn → R be pseudoconvex at x̄ ∈ S, and gi, i ∈ I(x̄),
differentiable at x̄. Suppose that gi, i ∈ I(x̄), are quasiconvex at x̄. In addition,
assume that there exist λi ≥ 0, i ∈ I(x̄), such that

∇f(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0. (5.1)

Then x̄ is a minimizer of f in S.

32
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5.1 Results of differentiable programming

In this section, we consider constraint qualifications for sufficient optimality con-
ditions in differentiable programming, where the objective function is pseudocon-
vex at a point.

In the whole of the chapter, suppose that gi, i ∈ I(x̄), are differentiable at
x̄ ∈ S. From Theorem 5.1, the following assumption is a constraint qualification
for sufficient optimality conditions:

(CQ1) gi, i ∈ I(x̄), are quasiconvex at x̄.

The purpose of this chapter is to study the following assumption:

(CQ2) S ⊂ x̄+ CS(x̄),

where
CS(x̄) = {d ∈ Rn : 〈∇gi(x̄), d〉 ≤ 0 for each i ∈ I(x̄)} .

First we give the relation between (CQ1) and (CQ2).

Theorem 5.2. (CQ1) implies (CQ2).

Proof. Suppose that (CQ1) holds. Then, for each i ∈ I(x̄),

gi(x) ≤ gi(x̄) implies that 〈∇gi(x̄), x− x̄〉 ≤ 0,

that is

gi(x) ≤ 0 implies that 〈∇gi(x̄), x− x̄〉 ≤ 0.

Therefore we have

S ⊂ {x ∈ Rn : gi(x) ≤ 0 for each i ∈ I(x̄)}
⊂ {x ∈ Rn : 〈∇gi(x̄), x− x̄〉 ≤ 0 for each i ∈ I(x̄)}
= x̄+ CS(x̄),

and then (CQ2) holds.

The inverse of Theorem 5.2 is not true in general, see the next example:

Example 5.1. Let n = 2, I = {1, 2}, g1(x1, x2) = x3
1 − x2, g2(x1, x2) = −x1

and x̄ = (0, 0). Then g1 and g2 are differentiable at x̄, ∇g1(x1, x2) = (3x2
1,−1),

∇g2(x1, x2) = (−1, 0) and I(x̄) = {1, 2}. Since S = {(x1, x2) : x1 ≥ 0, x2 ≥ x3
1}

and CS(x̄) = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}, (CQ2) holds. However (CQ1) does not
hold because g1 is not quasiconvex at x̄.

The following theorem shows that (CQ2) is a constraint qualification for suf-
ficient optimality conditions.

Theorem 5.3. The following statements are equivalent:
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(i) (CQ2) is fulfilled.

(ii) For each f : Rn → R such that f is linear, assume that there exist λi ≥ 0,
i ∈ I(x̄), such that (5.1) is fulfilled. Then x̄ is a minimizer of f in S.

(iii) For each f : Rn → R such that f is both strictly convex and differentiable
at x̄, assume that there exist λi ≥ 0, i ∈ I(x̄), such that (5.1) is fulfilled.
Then x̄ is a minimizer of f in S.

(iv) For each f : Rn → R such that f is both convex and differentiable at x̄,
assume that there exist λi ≥ 0, i ∈ I(x̄), such that (5.1) is fulfilled. Then
x̄ is a minimizer of f in S.

(v) For each f : Rn → R such that f is strictly pseudoconvex at x̄, assume
that there exist λi ≥ 0, i ∈ I(x̄), such that (5.1) is fulfilled. Then x̄ is a
minimizer of f in S.

(vi) For each f : Rn → R such that f is pseudoconvex at x̄, assume that there
exist λi ≥ 0, i ∈ I(x̄), such that (5.1) is fulfilled. Then x̄ is a minimizer of
f in S.

Proof. It is clear that (vi) implies (v), (v) implies (iii), (vi) implies (iv), and (iv)
implies (ii). Then we will show that (iii) implies (ii), (ii) implies (i), and (i)
implies (vi).

Suppose that (iii) holds. To show (ii), assume that (5.1) is fulfilled for a linear
function f : Rn → R and λi ≥ 0, i ∈ I(x̄). Let k ∈ N and define f̃k : Rn → R by

f̃k(x) =
1

k
‖x− x̄‖2 + f(x)− f(x̄)

for each x ∈ Rn. Since ∇f̃k(x̄) = ∇f(x̄), the assumption of (iii) also holds for
function f̃k which is both strictly convex and differentiable at x̄. Therefore x̄ is
a minimizer of f̃k in S. For any x ∈ S and k ∈ N,

0 = f̃k(x̄) ≤ f̃k(x) =
1

k
‖x− x̄‖2 + f(x)− f(x̄),

and taking the limit as k → +∞, we have that f(x̄) ≤ f(x). Thus x̄ is a
minimizer of f in S, and then (ii) holds.

Next, suppose that (ii) holds. To show (i), we may assume that I(x̄) 6= ∅. Let
l ∈ I(x̄) and define f : Rn → R by

f(x) = −〈∇gl(x̄), x〉

for each x ∈ Rn, and put

λi =

{
1 (i = l)
0 (i 6= l)
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for each i ∈ I(x̄). Then we have

∇f(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = −∇gl(x̄) +∇gl(x̄) = 0.

Since the assumption of (ii) holds, x̄ is a minimizer of f in S. For each x ∈ S,
we have

−〈∇gl(x̄), x̄〉 = f(x̄) ≤ f(x) = −〈∇gl(x̄), x〉 ,

so 〈∇gl(x̄), x− x̄〉 ≤ 0. Since this inequality holds for any l ∈ I(x̄) and x ∈ S,
we obtain

S ⊂ x̄+ {d ∈ Rn : 〈∇gl(x̄), d〉 ≤ 0 for each l ∈ I(x̄)}

and hence (i) holds.
Finally, suppose that (i) holds. To show (vi), assume that (5.1) is fulfilled for

a function f : Rn → R which is pseudoconvex at x̄ and λi ≥ 0, i ∈ I(x̄). For
any x ∈ S, 〈∇gi(x̄), x− x̄〉 ≤ 0 for each i ∈ I(x̄) because (CQ2) holds. Thus it
follows from (5.1) that

〈∇f(x̄), x− x̄〉 = −
∑
i∈I(x̄)

λi 〈∇gi(x̄), x− x̄〉 ≥ 0.

Since f is pseudoconvexity at x̄, we obtain that f(x) ≥ f(x̄). Then x̄ is a
minimizer of f in S and hence (vi) holds. This completes the proof.

This theorem shows that (CQ2) is a necessary and sufficient constraint quali-
fication for sufficient optimality conditions in differentiable programming, where
the objective function is pseudoconvex at a point. Remark that Theorem 5.1 can
be shown as a corollary of Theorem 5.3.

Example 5.2. Consider the problem:

minimize x2/(x
2
1 + 1),

subject to x3
1 − x2 ≤ 0,
−x1 ≤ 0.

In Example 5.1, we have already seen that (CQ2) is fulfilled at x̄ = (0, 0). Since
f(x1, x2) = x2/(x

2
1 + 1) is pseudoconvex at x̄ and (5.1) is fulfilled for λ1 = 1

and λ2 = 0, then we have that x̄ = (0, 0) is a minimizer of f in S by using
Theorem 5.3.
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5.2 Results of differentiable multiobjective pro-

gramming

In this section, we observe necessary and sufficient constraint qualifications for
sufficient conditions for Pareto optimality and weak Pareto optimality in dif-
ferentiable multiobjective programming, where the components of the objective
function or the linear combination of them is assumed some convexity condition.
We consider the following multiobjective programming problem:

minimize F (x),
subject to gi(x) ≤ 0, i ∈ I,

where F is a function from Rn to Rp. Let C be a closed convex pointed cone in
Rp such that C is not the whole space and the interior of C is not empty. It is
known that int C+ 6= ∅ and

int C+ = {µ ∈ Rp : 〈µ, ν〉 > 0 for each ν ∈ C \ {0}},

where C+ is the positive polar cone of C, that is, C+ = {µ ∈ Rp : 〈µ, ν〉 ≥
0 for each ν ∈ C}. For a function F : Rn → Rp, we say that x̄ ∈ S is a Pareto
minimizer of F in S with respect to C if F (S) ∩ (F (x̄) − C) = {F (x̄)}. Also,
we say that x̄ ∈ S is a weak Pareto minimizer of F in S with respect to C if
F (S) ∩ (F (x̄)− int C) = ∅, see [9].

First, let us see results related to differentiable multiobjective programming,
where the linear combination of the components of the objective function is as-
sumed some convexity condition. For a function F : Rn → Rp and a vector
µ ∈ Rp, the composition of F and 〈µ, ·〉 is denoted by µ ◦ F for convenience.

Theorem 5.4. The following statements are equivalent:

(i) (CQ2) is fulfilled.

(ii) For each F : Rn → Rp, assume that there exist µ ∈ C+ \ {0} and λi ≥ 0,
i ∈ I(x̄), such that µ ◦ F is linear, and

∇(µ ◦ F )(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0. (5.2)

Then x̄ is a weak Pareto minimizer of F in S with respect to C.

(iii) For each F : Rn → Rp, assume that there exist µ ∈ C+ \ {0} and λi ≥ 0,
i ∈ I(x̄), such that µ◦F is both convex and differentiable at x̄, and (5.2) is
fulfilled. Then x̄ is a weak Pareto minimizer of F in S with respect to C.

(iv) For each F : Rn → Rp, assume that there exist µ ∈ C+ \ {0} and λi ≥ 0,
i ∈ I(x̄), such that µ ◦ F is pseudoconvex at x̄, and (5.2) is fulfilled. Then
x̄ is a weak Pareto minimizer of F in S with respect to C.
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Proof. It is clear that (iv) implies (iii), and (iii) implies (ii). We will show (ii)
implies (i) and (i) implies (iv).

Suppose that (ii) holds. To show (i), it suffices to show that (ii) of Theorem 5.3
holds. Assume that (5.1) is fulfilled for a linear function f : Rn → R and λi ≥ 0,
i ∈ I(x̄). Let c ∈ int C and µ ∈ C+ \ {0} such that 〈µ, c〉 = 1 and define
F : Rn → Rp by

F (x) = f(x) c

for each x ∈ Rn. Then we have µ ◦ F = f and

∇(µ ◦ F )(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = ∇f(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0,

and then the assumption (ii) of the theorem holds. Therefore x̄ is a weak Pareto
minimizer of F in S with respect to C, and so x̄ is a minimizer of f in S.
Consequently, (ii) of Theorem 5.3 holds.

Next, suppose that (i) holds. To show (iv), assume that (5.2) is fulfilled for
a function F : Rn → Rp, µ ∈ C+ \ {0} and λi ≥ 0, i ∈ I(x̄) such that µ ◦ F
is pseudoconvex at x̄. Define f = µ ◦ F , then f is pseudoconvex at x̄ and (5.1)
holds for function f , and then the assumption of (vi) of Theorem 5.3 holds. By
using Theorem 5.3, x̄ is a minimizer of µ ◦ F in S. This implies that x̄ is a weak
Pareto minimizer of F in S with respect to C, and hence (iv) of the theorem
holds. This completes the proof.

This theorem shows that (CQ2) is a necessary and sufficient constraint quali-
fication for sufficient conditions for weak Pareto optimality in differentiable mul-
tiobjective programming, where the linear combination of the components of the
objective function is pseudoconvex at a point.

In the following theorem, we show that (CQ2) is also a necessary and sufficient
constraint qualification for sufficient conditions for Pareto optimality.

Theorem 5.5. The following statements are equivalent:

(i) (CQ2) is fulfilled.

(ii) For each F : Rn → Rp, assume that there exist µ ∈ int C+ and λi ≥ 0,
i ∈ I(x̄), such that µ ◦ F is linear, and (5.2) is fulfilled. Then x̄ is a Pareto
minimizer of F in S with respect to C.

(iii) For each F : Rn → Rp, assume that there exist µ ∈ C+ \ {0} and λi ≥ 0,
i ∈ I(x̄), such that µ ◦ F is both strictly convex and differentiable at x̄,
and (5.2) is fulfilled. Then x̄ is a Pareto minimizer of F in S with respect
to C.

(iv) For each F : Rn → Rp, assume that there exist µ ∈ int C+ and λi ≥ 0,
i ∈ I(x̄), such that µ ◦ F is both convex and differentiable at x̄, and (5.2)
is fulfilled. Then x̄ is a Pareto minimizer of F in S with respect to C.
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(v) For each F : Rn → Rp, assume that there exist µ ∈ C+ \ {0} and λi ≥ 0,
i ∈ I(x̄), such that µ◦F is strictly pseudoconvex at x̄, and (5.2) is fulfilled.
Then x̄ is a Pareto minimizer of F in S with respect to C.

(vi) For each F : Rn → Rp, assume that there exist µ ∈ int C+ and λi ≥ 0,
i ∈ I(x̄), such that µ ◦ F is pseudoconvex at x̄, and (5.2) is fulfilled. Then
x̄ is a Pareto minimizer of F in S with respect to C.

Proof. It is clear that (vi) implies (iv), (iv) implies (ii), and (v) implies (iii). We
will show that (ii) implies (i), (i) implies (vi), (iii) implies (i), and (i) implies (v).

The proofs of (ii) implies (i) and (i) implies (vi) are almost same to the proofs
of (ii) implies (i) and (i) implies (iv) of Theorem 5.4, respectively; the differences
are the following: c ∈ C \ {0}, µ ∈ int C+, and x̄ is a Pareto minimizer.

Also the proof (iii) implies (i) is almost same to the proof of (ii) implies (i) of
Theorem 5.4; the differences are the following: to show that (iii) of Theorem 5.3
holds, f is both strictly convex and differentiable at x̄, and x̄ is a Pareto minimizer
of F .

Suppose that (i) holds. To show (v), assume that (5.2) is fulfilled for a function
F : Rn → Rp, µ ∈ C+ \ {0} and λi ≥ 0, i ∈ I(x̄) such that µ ◦ F is strictly
pseudoconvex at x̄. If x̄ is not a Pareto minimizer of F in S with respect to C,
there exists x0 ∈ S such that F (x0) ∈ F (x̄) − C and F (x0) 6= F (x̄). From (i),
x0 − x̄ ∈ CS(x̄), that is, 〈∇gi(x̄), x0 − x̄〉 ≤ 0 for all i ∈ I(x̄). From (5.2),

〈∇(µ ◦ F )(x̄), x0 − x̄〉 = −

〈∑
i∈I(x̄)

λi∇gi(x̄), x0 − x̄

〉
≥ 0,

then 〈∇(µ ◦ F )(x̄), x0〉 ≥ 〈∇(µ ◦ F )(x̄), x̄〉. Since µ ◦ F is strictly pseudoconvex
at x̄ and x0 6= x̄, µ ◦ F (x0) > µ ◦ F (x̄), that is, 〈µ, F (x0)− F (x̄)〉 > 0. This
contradicts to µ ∈ C+ and F (x0)−F (x̄) ∈ −C. Therefore x̄ is a Pareto minimizer
of F in S with respect to C and consequently (v) holds. This completes the
proof.

Example 5.3. Consider the problem:

minimize (x1, x2),
subject to x3

1 − x2 ≤ 0,
−x1 ≤ 0.

In Example 5.1, we have already seen that (CQ2) is fulfilled at x̄ = (0, 0). Let
C = R2

+, and F (x1, x2) = (F1(x1, x2), F2(x1, x2)) = (x1, x2). Clearly F1, F2

and µ1F1 + µ2F2 are linear at x̄. Put µ1 = µ2 = λ1 = λ2 = 1, then (5.2) is
fulfilled. Hence, x̄ = (0, 0) is a Pareto minimizer of F in S with respect to Rp

+ by
Theorem 5.5.
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In the rest of the chapter, we consider the special case when C = Rp
+. Clearly,

C+ = C, int C+ = {(µ1, . . . , µp) : µj > 0 for all j ∈ J}, and µ ◦ F =
∑p

j=1 µjFj.
In Theorems 5.4 and 5.5, it is required that some linear combination of the
components of the objective function

∑p
j=1 µjFj holds linear, convex, strictly

convex, pseudoconvex, or strictly pseudoconvex at a point. If all Fj are linear,
convex, or strictly convex at a point, and (µ1, . . . , µp) ∈ Rp

+\{0}, then
∑p

j=1 µjFj
is also linear, convex, or strictly convex at the point, respectively; We have seen
the situation in Example 5.3. However, even if all Fj are pseudoconvex at a
point,

∑p
j=1 µjFj is not pseudoconvex at the point in general. Therefore, we

give results when the components of the objective function are assumed some
convexity condition.

Theorem 5.6. The following statements are equivalent:

(i) (CQ2) is fulfilled.

(ii) For each F : Rn → Rp such that Fj is linear for all j ∈ J , assume that
there exist µj ≥ 0, j ∈ J , and λi ≥ 0, i ∈ I(x̄), such that (µ1, µ2, . . . , µp) 6=
(0, 0, . . . , 0) and ∑

j∈J

µj∇Fj(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0. (5.3)

is fulfilled. Then x̄ is a weak Pareto minimizer of F in S with respect to
Rp

+.

(iii) For each F : Rn → Rp such that Fj is both convex and differentiable at x̄
for all j ∈ J , assume that there exist µj ≥ 0, j ∈ J , and λi ≥ 0, i ∈ I(x̄),
such that (µ1, µ2, . . . , µp) 6= (0, 0, . . . , 0) and (5.3) is fulfilled. Then x̄ is a
weak Pareto minimizer of F in S with respect to Rp

+.

(iv) For each F : Rn → Rp such that Fj is pseudoconvex at x̄ for all j ∈ J ,
assume that there exist µj ≥ 0, j ∈ J , and λi ≥ 0, i ∈ I(x̄), such that
(µ1, µ2, . . . , µp) 6= (0, 0, . . . , 0) and (5.3) is fulfilled. Then x̄ is a weak Pareto
minimizer of F in S with respect to Rp

+.

Proof. It is clear that (iv) implies (iii), and (iii) implies (ii). Then we may show
that (ii) implies (i) and (i) implies (iv).

Suppose that (ii) holds. To show (i), it suffices to show that (ii) of Theorem 5.3
holds. Assume that (5.1) is fulfilled for a linear function f : Rn → R and λi ≥ 0,
i ∈ I(x̄). Define F : Rn → Rp by

Fj(x) = f(x)

for each x ∈ Rn, where F (x) = (F1(x), . . . , Fp(x)), and put µ = (1/p, . . . , 1/p).
Then we have∑

j∈J

µj∇Fj(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = ∇f(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0.
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By the assumption (ii) of the theorem, x̄ is a weak Pareto minimizer of F in S
with respect to Rp

+. This implies that x̄ is a minimizer of f in S, and hence (ii)
of Theorem 5.3 holds.

Suppose that (i) holds. To show (iv), assume that (5.3) is fulfilled for a
function F : Rn → Rp, µj ≥ 0, j ∈ J , (µ1, . . . , µp) 6= (0, . . . , 0) and λi ≥ 0,
i ∈ I(x̄), where F = (F1, . . . , Fp), all Fj, j ∈ J , are pseudoconvex at x̄. Define

F̃ : Rn → Rp by
F̃j(x) = 〈∇Fj(x̄), x〉

for each x ∈ Rn, where F̃ (x) = (F̃1(x), . . . , F̃p(x)). Since
∑

j∈J µjF̃j is linear and

∇
(∑
j∈J

µjF̃j

)
(x̄) +

∑
i∈I(x̄)

λi∇gi(x̄) =
∑
j∈J

µj∇Fj(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0,

the assumption of (ii) of Theorem 5.4 holds. By using Theorem 5.4, x̄ is a weak

Pareto minimizer of F̃ in S with respect to Rp
+. This implies that x̄ is a weak

Pareto minimizer of F in S with respect to Rp
+. If not, there exists x0 ∈ S

such that Fj(x0) < Fj(x̄) for all j ∈ J . Since all Fj are pseudoconvex at x̄,

〈∇Fj(x̄), x0 − x̄〉 < 0, that is F̃j(x0) < F̃j(x̄) for all j ∈ J . This shows x̄ is not a

weak Pareto minimizer of F̃ in S with respect to Rp
+, and this is a contradiction.

Hence (iv) holds. This completes the proof.

This theorem shows that (CQ2) is a necessary and sufficient constraint quali-
fication for sufficient conditions for weak Pareto optimality in differentiable mul-
tiobjective programming, where the components of the objective function are
pseudoconvex at a point.

In the following two theorems, we show that (CQ2) is a necessary and sufficient
constraint qualification for sufficient conditions for Pareto optimality.

Theorem 5.7. The following statements are equivalent:

(i) (CQ2) is fulfilled.

(ii) For each F : Rn → Rp such that Fj is both strictly convex and differentiable
at x̄ for all j ∈ J , assume that there exist µj ≥ 0, j ∈ J , and λi ≥ 0,
i ∈ I(x̄), such that (µ1, µ2, . . . , µp) 6= (0, 0, . . . , 0) and (5.3) is fulfilled.
Then x̄ is a Pareto minimizer of F in S with respect to Rp

+.

(iii) For each F : Rn → Rp such that Fj is strictly pseudoconvex at x̄ for all
j ∈ J , assume that there exist µj ≥ 0, j ∈ J , and λi ≥ 0, i ∈ I(x̄), such
that (µ1, µ2, . . . , µp) 6= (0, 0, . . . , 0) and (5.3) is fulfilled. Then x̄ is a Pareto
minimizer of F in S with respect to Rp

+.

Proof. It is clear that (iii) implies (ii). We will show that (ii) implies (i) and (i)
implies (iii).
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Suppose that (ii) holds. To show (i), it suffices to show that (iii) of The-
orem 5.3 holds. Assume that (5.1) is fulfilled for a function f : Rn → R and
λi ≥ 0, i ∈ I(x̄), where f is both strictly convex and differentiable at x̄. Define
F : Rn → Rp by

Fj(x) = f(x)

for each x ∈ Rn, where F = (F1, . . . , Fp), and put µj = 1/p. Then we have∑
j∈J

µj∇Fj(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = ∇f(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0.

By the assumption (ii) of the theorem, x̄ is a Pareto minimizer of F in S with
respect to Rp

+. This implies that x̄ is a minimizer of f in S, and hence (iii) of
Theorem 5.3 holds.

Next suppose that (i). To show (iii), assume that (5.3) is fulfilled for a function
F : Rn → Rp, µj ≥ 0, j ∈ J , (µ1, . . . , µp) 6= (0, . . . , 0) and λi ≥ 0, i ∈ I(x̄),
where F = (F1, . . . , Fp), all Fj, j ∈ J , are strictly pseudoconvex at x̄. Define

F̃ : Rn → Rp by
F̃j(x) = 〈∇Fj(x̄), x〉

for each x ∈ Rn, where F̃ (x) = (F̃1(x), . . . , F̃p(x)). Since
∑

j∈J µjF̃j is linear and

∇
(∑
j∈J

µjF̃j

)
(x̄) +

∑
i∈I(x̄)

λi∇gi(x̄) =
∑
j∈J

µj∇Fj(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0,

the assumption of (ii) of Theorem 5.4 for the function F̃ holds. By using The-

orem 5.4, x̄ is a weak Pareto minimizer of F̃ in S with respect to Rp
+. This

implies x̄ is a Pareto minimizer of F in S with respect to Rp
+. If not, there ex-

ists x0 ∈ S such that F (x0) − F (x̄) ∈ −Rp
+ and F (x0) 6= F (x̄). For all j ∈ J ,

therefore, Fj(x0) ≤ Fj(x̄) and then 〈∇Fj(x̄), x0 − x̄〉 < 0 because Fj is strictly

pseudoconvex at x̄ and x0 6= x̄. From the definition of F̃j,

F̃j(x0) < F̃j(x̄)

for all j ∈ J . This shows x̄ is not a weak Pareto minimizer of F̃ in S with
respect to Rp

+, and this is a contradiction. Therefore x̄ is a Pareto minimizer of
F in S with respect to Rp

+. Hence (iii) of the theorem holds. This completes the
proof.

Theorem 5.8. The following statements are equivalent:

(i) (CQ2) is fulfilled.

(ii) For each F : Rn → Rp such that Fj is both convex and differentiable at x̄
for all j ∈ J \{j0}, and Fj0 is both strictly convex and differentiable at x̄ for
some j0 ∈ J , assume that there exist µj > 0, j ∈ J , and λi ≥ 0, i ∈ I(x̄),
such that (5.3) is fulfilled. Then x̄ is a Pareto minimizer of F in S with
respect to Rp

+.



Optimality conditions for nonlinear and nonconvex programming problems 42

(iii) For each F : Rn → Rp such that Fj is both quasiconvex and differentiable
at x̄ for all j ∈ J \ {j0}, and Fj0 is strictly pseudoconvex at x̄ for some
j0 ∈ J , assume that there exist µj > 0, j ∈ J , and λi ≥ 0, i ∈ I(x̄), such
that (5.3) is fulfilled. Then x̄ is a Pareto minimizer of F in S with respect
to Rp

+.

Proof. It is clear that (iii) implies (ii), and the proof of (ii) implies (i) is almost
same to the proof of (ii) implies (i) of Theorem 5.7.

Suppose that (i) holds. To show (iii), assume that (5.3) is fulfilled for a
function F : Rn → Rp, µj > 0, j ∈ J , and λi ≥ 0, i ∈ I(x̄), where F =
(F1, . . . , Fp), Fj is both quasiconvex and differentiable at x̄ for all j ∈ J \ {j0},
and Fj0 is strictly pseudoconvex at x̄ for some j0 ∈ J . Define F̃ : Rn → Rp by

F̃j(x) = 〈∇Fj(x̄), x〉

for each x ∈ Rn, where F̃ (x) = (F̃1(x), . . . , F̃p(x)). Since
∑

j∈J µjF̃j is linear and

∇
(∑
j∈J

µjF̃j

)
(x̄) +

∑
i∈I(x̄)

λi∇gi(x̄) =
∑
j∈J

µj∇Fj(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) = 0,

the assumption of (ii) of Theorem 5.5 for the function F̃ holds. By using The-

orem 5.5, x̄ is a Pareto minimizer of F̃ in S with respect to Rp
+. This im-

plies x̄ is a Pareto minimizer of F in S with respect to Rp
+. If not, there ex-

ists x0 ∈ S such that F (x0) − F (x̄) ∈ −Rp
+ and F (x0) 6= F (x̄). For each

j ∈ J \{j0}, since Fj(x0) ≤ Fj(x̄) and Fj are both quasiconvex and differentiable
at x̄, 〈∇Fj(x̄), x0 − x̄〉 ≤ 0 holds from Proposition 1.1. Also Fj0(x0) ≤ Fj0(x̄)
and Fj0 is strictly pseudoconvex at x̄, 〈∇Fj0(x̄), x0 − x̄〉 < 0 holds. Therefore we
have

F̃ (x0) ≤ F̃ (x̄) and F̃ (x0) 6= F̃ (x̄),

and this shows x̄ is not a Pareto minimizer of F̃ in S with respect to Rp
+. Therefore

x̄ is a Pareto minimizer of F in S with respect to Rp
+, and hence (iii) holds. This

completes the proof.

There are trade-off relationships between conditions of Fj and µj in Theo-
rems 5.7 and 5.8.
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