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Abstract. In this paper, we investigate the existence of Pareto and weak Pareto
equilibria for multiobjective games without compactness. By employing an ex-
istence theorem of Pareto equilibria due to Yu and Yuan([10]), several existence
theorems of Pareto and weak Pareto equilibria for the multiobjective games are
established in a similar way to Flores-Bázan([4]).

1. Introduction

The concept of an equilibrium point for an n-person game was first introduced
by Nash, who established the existence of the equilibrium point under certain
assumptions. Since that time, the Nash equilibrium problem for n-person games
have been intensively studied and extended by many authors.
Recently, the study of the existence of Pareto equilibria in game theory with

vector payoffs has been focused by many authors, for example, see [3], [11]. As
one of the reasons is that multicriteria models can be better applied to real-world
situations. The motivation for the study of multicriteria models can be found in
[2], [12]. The existence of Pareto equilibria is one of the basic problems in the game
theory. In order to guarantee the existence of Pareto equilibria of the multiobjective
games, some sufficient conditions have been given by several authors. Almost of
such sufficient conditions are closely related to compactness.
In this paper, we investigate the existence of Pareto and weak Pareto equilibria

for multiobjective games without compactness. By employing an existence theorem
of Pareto equilibria due to Yu and Yuan([10]), several existence theorems of Pareto
and weak Pareto equilibria for the multiobjective games without compactness are
established in a similar way to Flores-Bázan([4]).

2. Notation and Preliminaries

In this paper, we shall consider a finite-players game with multicriteria in its
strategic form G := (Xi, F

i)i∈N , where N := {1, 2, . . . , n}. For each i ∈ N ,
Xi is the set of strategies in Rki for the player i, and each F i is mapping from
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X := Πi∈NXi into Rki , which is called the payoff function of the i’s player, here ki
is a positive integer. If a strategy combination x := (x1, x2, . . . , xn) ∈ X is played,
each player i gets his/her payoff F i(x) = (f i

1(x), f
i
2(x), . . . , f

i
ki
(x)), which consists

of noncommensurable outcomes. Also, we assume that this game is a noncoop-
erative game, that is, absolutely no preplay communication is permitted between
the players, and so the players act as free agents, each wanting only to maximize
his/her own payoff according to his/her preference.
For the games with vector payoff functions, in general, there does not exist a

strategy combination x̄ ∈ X to minimize all f i
js for each player (see [9]). Therefore

we need to define solution concepts for multicriteria games in the same way [8].
For each given m ∈ N, we denote by Rm

+ the nonnegative orthant of Rm, that is,

Rm
+ = {u = (u1, u2, . . . , um) ∈ Rm | u1, u2, . . . , um ≥ 0},

also the interior of the nonnegative orthant Rm is a nonempty with the usual
topology, that is,

intRm
+ = {u = (u1, u2, . . . , um) ∈ Rm | u1, u2, . . . , um > 0}.

For each i ∈ N , denote
Xı̂ := Πj∈N\{i}Xj.

If x = (x1, x2, . . . , xn) ∈ X, we write

xı̂ := (x1, x2, . . . , xi−1, xi+1, . . . , xn) ∈ Xı̂.

If xi ∈ Xi, we use (xı̂, xi) to denote y = (y1, y2, . . . , yn) ∈ X such that yi = xi and
y ı̂ = xı̂. Now we give the following solution concepts.

Definition 2.1. ([8]) A strategy combination x̄ ∈ X is said to be a Pareto equi-
librium (respectively, a weak Pareto equilibrium) of the game G = (Xi, F

i)i∈N if
for each player i, there is no strategy xi ∈ Xi such that

F i(x̄)− F i(x̄ı̂, xi) ∈ Rki
+ \ {0} (respectively, F i(x̄)− F i(x̄ı̂, xi) ∈ intRki

+ ).

It is clear that any Pareto equilibrium is a weak Pareto equilibrium, however,
the converse is not true.

Definition 2.2. ([8]) A strategy combination x̄ ∈ X is said to be a weight Nash-
equilibrium respect to weight vector W = (W 1,W 2, . . . ,W n) of the game G =
(Xi, F

i)i∈N if for each player i ∈ N ,

(1) W i ∈ Rki
+ \ {0}, and

(2) ⟨W i, F i(x̄)⟩ ≤
⟨
W i, F i(x̄ı̂, xi)

⟩
for each xi ∈ Xi.

Furthermore, we prepare several concepts concerned with our main results. For
any closed set K in Rm, we define the recession cone K∞ of K as the closed set

K∞ = {x ∈ Rm | ∃tn ↓ 0, ∃xn ∈ K s.t. tnxn → x}.
If K is convex, it is well known(see [7]) that for any x0 ∈ K,

K∞ = {x ∈ Rm | x0 + tx ∈ K, ∀t > 0}.
Next, we define quasiconvexity and semi-strictly quasiconvexity of functions.
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Definition 2.3. Let C ⊆ Rn be a convex set. A function f : C → R is said to be

(1) quasiconvex if f(tx + (1 − t)y) ≤ max{f(x), f(y)} for all x, y ∈ C and all
t ∈ [0, 1],

(2) semi-strictly quasiconvex if given any u, v ∈ C, f(u) ̸= f(v), one has
f(z) < max{f(u), f(v)} for all z ∈ (u, v).

All semi-strictly quasiconvex functions are not quasiconvex. But
Karamardian([5]) showed Proposition 2.4.

Proposition 2.4. ([5]) Let C ⊆ Rn be a convex set and a function f : C → R is
semi-strictly quasiconvex and lower semicontinuous. Then, f is quasiconvex.

3. Main results

In this section, we give some results of Pareto and weak Pareto equilibria for a
multiobjective game.

Lemma 3.1. ([8]) Let G = (Xi, F
i)i∈N be a multiobjective game. Then, each

weight Nash-equilibrium x̄ ∈ X with a weight

W = (W 1,W 2, . . . ,W n) ∈ (Rk1
+ \ {0})× (Rk2

+ \ {0})× · · · × (Rkn
+ \ {0})

is a weak Pareto equilibrium of the game G. Also each weight Nash-equilibrium
x̄ ∈ X with a weight

W = (W 1,W 2, . . . ,W n) ∈ intRk1
+ × intRk2

+ × · · · × intRkn
+

is a Pareto equilibrium of the game G.

Using Lemma 3.1, Yu and Yuan([10]) showed Theorem 3.2.

Theorem 3.2. ([10]) Let G = (Xi, F
i)i∈N be a multiobjective game where each Xi

is a nonempty compact and convex subset of a Hausdorff topological vector space
Ei. If there is a weight combination W = (W 1,W 2, . . . ,W n) with W i ∈ Rki

+ \ {0}
such that the following are satisfied: for each i ∈ N ,

(1) the function (x, y) 7→
⟨
W i, F i(x̄ı̂, yi)

⟩
is lower semicontinuous,

(2) for each fixed y ∈ X, the mapping x 7→
⟨
W i, F i(x̄ı̂, yi)

⟩
is upper semicon-

tinuous, and
(3) for each fixed x ∈ X, the mapping y 7→

⟨
W i, F i(x̄ı̂, yi)

⟩
is quasiconvex.

Then G has at least one weak Pareto equilibrium. Furthermore, if W i ∈ intRki
+ for

all i ∈ N , then G has at least one Pareto equilibrium.

Now, we consider the existence of Pareto and weak Pareto equilibria for multi-
objective games without compactness of X in a similar way to Flores-Bázan([4]).
Henceforth ∥ · ∥ will denote any norm in Πj∈NRkj . We will need the following
non-coercive condition (∗) to be satisfied by the payoff functions F i.
(∗) for any sequence {xn} in X satisfying:

(i) ∥xn∥ → +∞, and
(ii) for all y ∈ X, there exists ny ∈ N such that F i(xn)−F i(xı̂

n, y
i) /∈ intRki

+ for
all n ≥ ny and for all i ∈ N ,
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there exist u ∈ X and n̄ ∈ N such that ∥u∥ < ∥xn̄∥ and F i(xn̄)− F i(xı̂
n̄, u

i) ∈ Rki
+

for all i ∈ N .

Theorem 3.3. Let G = (Xi, F
i)i∈N be a multiobjective game where each Xi is a

nonempty closed and convex subset of Rki. Assume that the following conditions
are satisfied for a weight combination W = (W 1,W 2, . . . ,W n) with W i ∈ Rki

+ \{0}:
for each i ∈ N ,

(1) the function (x, y) 7→
⟨
W i, F i(xı̂, yi)

⟩
is lower semicontinuous,

(2) for each fixed y ∈ X, the mapping x 7→
⟨
W i, F i(xı̂, yi)

⟩
is upper semicon-

tinuous, and
(3) for each fixed x ∈ X, the mapping y 7→

⟨
W i, F i(xı̂, yi)

⟩
is semi-strictly

quasiconvex.

If, in addition F i satisfies (∗), then G has at least one weak Pareto equilibrium.
Moreover, if W i ∈ intRki

+ for all i ∈ N , then G has at least one Pareto equilibrium.

Proof. For each i ∈ N , define a mapping gi : X ×X → R by

gi(x, y) =
⟨
W i, F i(xı̂, yi)

⟩
, (x, y) ∈ X ×X.

For every n ∈ N, put An := {x ∈ X | ∥x∥ ≤ n}. We may suppose, without loss of
generality, that An ̸= ∅ for all n ∈ N. Let us consider the problem:

(Pn) find a weight Nash-equilibrium on An respect to W of the game G.

For each i ∈ N , we can check the restriction gi|An satisfies (1), (2), and (3).
Also gi|An(x, ·) is also quasiconvex from (1), (3), and Proposition 2.4. By using
Theorem 3.2, problem (Pn) has a weight Nash-equilibrium on An respect to the
weight vector W of the game G, say xn ∈ An for all n ∈ N. If ∥xn∥ < n for some
n ∈ N, then xn is also weight Nash-equilibrium respect to the weight vector W of
the game G. If not, there exist y ∈ X and i ∈ N such that gi(xn, xn) > gi(xn, y).
Obviously ∥y∥ > n. Then we can find α ∈ (0, 1) satisfying ∥αxn − (1 − α)y∥ < n
and put z = αxn − (1 − α)y. Clearly gi(xn, xn) ≤ gi(xn, z). Since gi(xn, ·) is
semi-strictly quasiconvex, we have

gi(xn, z) = gi(xn, αxn + (1− α)y) < gi(xn, xn).

This is a contradiction. Hence, by Lemma 3.1, xn is a weak Pareto equilibrium of
the game G.
Now we may assume ∥xn∥ = n for all n ∈ N. For each y ∈ X, choose

ny ∈ N satisfying ny > ∥y∥. For each n ∈ N with n ≥ ny and i ∈ N , we
have ⟨W i, F i(xn)⟩ ≤

⟨
W i, F i(xı̂

n, y
i)
⟩
since xn is a solution of (Pn), therefore

F i(xn) − F i(xı̂
n, y

i) /∈ intRki
+ . This shows that the sequence {xn} satisfies con-

ditions (i) and (ii) of (∗). By the assumption, there exist u ∈ X and n̄ ∈ N such
that ∥u∥ < ∥xn̄∥ and F i(xn̄) − F i(xı̂

n̄, u
i) ∈ Rki

+ for all i ∈ N . We have that
xn̄ is also weight Nash-equilibrium respect to the weight vector W of the game
G. If not, there exist y ∈ X and i ∈ N such that gi(xn̄, xn̄) > gi(xn̄, y). Obvi-
ously ∥y∥ > n̄, and so ∥u∥ < ∥xn̄∥ = n̄. Then we can find α ∈ (0, 1) satisfying
∥αu− (1− α)y∥ < n̄, put z = αu− (1− α)y. Clearly gi(xn̄, xn̄) ≤ gi(xn̄, z). Since
F i(xn̄)−F i(xı̂

n̄, u
i) ∈ Rki

+ , we have g
i(xn̄, xn̄) ≥ gi(xn̄, u). Now, we check two cases:
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gi(xn̄, xn̄) = gi(xn̄, u), and gi(xn̄, xn̄) > gi(xn̄, u). In the former case, gi(xn̄, ·) is
semi-strictly quasiconvex, we have

gi(xn̄, z) = gi(xn̄, αu+ (1− α)y)

< gi(xn̄, u)

= gi(xn̄, xn̄).

This is a contradiction. In the latter case, gi(xn̄, ·) is also quasiconvex, we have

gi(xn̄, z) = gi(xn̄, αu+ (1− α)y)

≤ max{gi(xn̄, u), g
i(xn̄, y)}

< gi(xn̄, xn̄).

This is also a contradiction. Furthermore, using Lemma 3.1, xn̄ is a weak Pareto
equilibrium of the game G. When W i ∈ intRki

+ for each i ∈ N , xn and xn̄ in the
proof above must be Pareto equilibria of the game G. We complete the proof. □

Next, we assume the following hypothesis (H1):
(H1) there exist functions F̄ 1, F̄ 2, . . . , F̄ n : X → R such that

for each i ∈ N , F i(xı̂
n, y

i
n) → F̄ i(y) whenever ∥xn∥ → +∞ and yn → y.

Let

R =
∩
y∈X

{
v ∈ X∞ | ∀λ > 0, ∀i ∈ N,

⟨
W i, F̄ i(λv + y)

⟩
≤

⟨
W i, F̄ i(y)

⟩ }
,

and we give the following weaken non-coercive condition (∗∗):
(∗∗) for any sequence {xn} in X satisfying:

(i) ∥xn∥ → +∞,
xn

∥xn∥
→ v for some v ∈ R, and

(ii) for all y ∈ X, there exists ny ∈ N such that F i(xn) − F i(xı̂
n, y

i) /∈
intRki

+ for all n ≥ ny and for all i ∈ N ,

there exist u ∈ X and n̄ ∈ N such that ∥u∥ < ∥xn̄∥ and F i(xn̄) −
F i(xı̂

n̄, u
i) ∈ Rki

+ for all i ∈ N .

Theorem 3.4. Let G = (Xi, F
i)i∈N be a multiobjective game where each Xi is a

nonempty closed and convex subset of Rki. Assume that the following conditions
are satisfied for a weight combination W = (W 1,W 2, . . . ,W n) with W i ∈ Rki

+ \{0}:
for each i ∈ N ,

(1) the function (x, y) 7→
⟨
W i, F i(xı̂, yi)

⟩
is lower semicontinuous,

(2) for each fixed y ∈ X, the mapping x 7→
⟨
W i, F i(xı̂, yi)

⟩
is upper semicon-

tinuous, and
(3) for each fixed x ∈ X, the mapping y 7→

⟨
W i, F i(xı̂, yi)

⟩
is semi-strictly

quasiconvex.

In addition, F i satisfies (H1) and (∗∗). Then G has at least one weak Pareto
equilibrium. Moreover, if W i ∈ intRki

+ for all i ∈ N , then G has at least one Pareto
equilibrium.
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Proof. In the same way to the proof of Theorem 3.3, we have ⟨W i, F i(xn)⟩ ≤⟨
W i, F i(xı̂

n, y
i)
⟩
for each i ∈ N . We may suppose, without loss of generality, that

xn

∥xn∥ → v, v ̸= 0. Then v ∈ X∞. For each y ∈ X, λ > 0, i ∈ N , and n ∈ N
sufficient large, since gi(xn, ·) is also quasiconvex, we have

gi
(
xn,

λ

∥xn∥
xn+

(
1− λ

∥xn∥

)
y

)
≤ max{gi(xn, xn), g

i(xn, y)}

≤ gi(xn, y),

or ⟨
W i, F i

(
xn,

λ

∥xn∥
xn+

(
1− λ

∥xn∥

)
y

)⟩
≤

⟨
W i, F i(xı̂

n, y
i)
⟩
.

¿From (H1), as n → +∞, we have⟨
W i, F̄ i(λv + y)

⟩
≤

⟨
W i, F̄ i(y)

⟩
,

for each i ∈ N , and then v ∈ R. The rest is same to the proof of Theorem 3.3. □
Moreover, we can replace (H1) to more general hypothesis (H2):

(H2) there exist functions F̄ 1, F̄ 2, . . . , F̄ n : X → R and φ1, φ2, . . . , φn : X →
(0,+∞) such that

for each i ∈ N ,
F i(xı̂

n, y
i
n)

φi(xn)
→ F̄ i(y) whenever ∥xn∥ → +∞ and yn → y,

and redefine R in the same way, that is,

R =
∩
y∈X

{
v ∈ X∞ | ∀λ > 0, ∀i ∈ N,

⟨
W i, F̄ i(λv + y)

⟩
≤

⟨
W i, F̄ i(y)

⟩ }
.

Theorem 3.5. Let G = (Xi, F
i)i∈N be a multiobjective game where each Xi is a

nonempty closed and convex subset of Rki. Assume that the following conditions
are satisfied for a weight combination W = (W 1,W 2, . . . ,W n) with W i ∈ Rki

+ \{0}:
for each i ∈ N ,

(1) the function (x, y) 7→
⟨
W i, F i(xı̂, yi)

⟩
is lower semicontinuous,

(2) for each fixed y ∈ X, the mapping x 7→
⟨
W i, F i(xı̂, yi)

⟩
is upper semicon-

tinuous, and
(3) for each fixed x ∈ X, the mapping y 7→

⟨
W i, F i(xı̂, yi)

⟩
is semi-strictly

quasiconvex.

In addition, F i satisfies (H2) and (∗∗). Then G has at least one weak Pareto
equilibrium. Moreover, if W i ∈ intRki

+ for all i ∈ N , then G has at least one Pareto
equilibrium.

The proof is similar to Theorem 3.4, and omitted.
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