島根大学地質学研究報告 9.9~16ページ(1990年7月) Geol. Rept. Shimane Univ., 9. p. 9~16(1990)

島根県美都町北東部三郡変成岩中の淡紅色緑簾石

新宫敦弘*·赤坂正秀**·山口佳昭***

Pink-colored epidote from the Sangun metamorphic rocks in the northeastern part of Mito-cho, Shimane Prefecture, Japan

Atsuhiro SHINGU, Masahide AKASAKA and Yoshiaki YAMAGUCHI

Abstract

Pink-colored epidote, from the Sangun metamorphic rocks in the northeastern part of Mito-cho, Shimane Prefecture, was described.

This mineral forms thin layer, lens or veinlet in the pelitic schist. It occurs as euhedral to subhedral crystals up to about 0.8 mm long. It is slightly reddish under the microscope and pleochroism is not distinct. It is optically biaxial negative, $2V(\text{meas}) = 74 \sim 79^{\circ}$. It shows complex zonal structure, sector zoning and parallel intergrowth composed of relatively Fe-rich and Al-poor epidote and Fe-poor and Al-rich one. The pistacite component varies from 12.3 to 19.1 mol%. This mineral contains Mn as Mn₂O₃ up to 0.77 wt. %. According to the thermal analyses, it dehydrates at 932 and 973°C. Unit-cell parameters calculated from the X-ray powder diffraction patterns are : a=8.884(4), b=5.615(3), c=10.153(5) Å, $\beta=115.41(2)^{\circ}$, V=457.4(4) Å³.

はじめに

新宮ほか(1989)は、島根県西部に位置する美濃郡 美都町板井川地域の三郡変成岩中からバラ輝石を主な 鉱石鉱物とするマンガン鉱石が新たに見いだされたこ とを報告した.その後、マンガン鉱床周辺の変成岩中 から淡紅色を呈する緑簾石の産出を認めたので報告す る.国内の淡紅色緑簾石については、兵庫県山中鉱山 産のものが吉村・桃井(1963)によってウイザマイト (Withamite)として報告され、また、淡紅色クリノゾ イサイトである斜桃簾石については、TAKESHITA and MATSUMOTO(1979)や竹下ほか(1989)などの報告 があるが、三郡変成岩からの淡紅色のクリノゾイサイ トー緑簾石系鉱物の産出については、本報告が初めて のものとおもわれる.

地質概説

美濃郡美都町から那賀郡三隅町にかけての地域(第 1図)には,三郡-中国帯(西村ほか,1977)に属す る三郡変成岩からなる三隅層群が分布する(岡村ほ か,1975).三隅層群は見かけ上の下位から都茂累層, 二川累層,黒沢累層の三層に区分される.都茂累層 は,美都町都茂付近を中心に分布し,主に粘板岩,砂 岩起源の片岩,準片岩からなる.二川累層は,美都町 北東部に分布し,主に泥質片岩,砂質片岩,緑色片岩 よりなり,少量の珪質片岩を伴う.黒沢累層は,主に 泥質片岩,砂質片岩よりなり,三隅町地域に広く分布 している.

淡紅色緑簾石は板井川地域の二川累層から産出す る.調査地域の地質図を第2図に示す.本地域は, チャートラミナイト(吉田,1981)を起源とする泥質 片岩を主体とし,珪質片岩および緑色片岩を伴う.こ れらの結晶片岩には,ホルンフェルス化が認められる が,これは,北方と東方約1kmの地点に貫入している

^{*} 蛛藤井基礎設計事務所 Fujii-kisosekkei Jimusho Co., Ltd. Higashitsuda 1349, Matsue, 690 Japan

^{**} 島根大学理学部地質教室

^{***} 信州大学理学部地質教室

白亜紀深成岩類による熱が原因と考えられる.

地層の一般走向は東西方向で,北に傾斜するが,北 北西から南南西方向の北西へ傾斜した軸を持つ向斜構 造が認められる.向斜軸付近では,走向傾斜が著しく 乱れる.

向斜軸周辺には安山岩質貫入岩類が分布する.山頂 部に位置する最上部の珪質片岩中にはマンガン鉱床が 胚胎する(新宮ほか,1989).

産状と光学的性質

淡紅色緑簾石は,二川累層の泥質片岩中に淡紅色の 薄層,レンズあるいは脈として産出し,珪質片岩,緑 色片岩,安山岩質貫入岩類からは産出しない.第2図 にこれまでに確認している淡紅色緑簾石の産出地点を 示す.母岩である泥質片岩は比較的石英に富み,石英 の多い部分は数cm程度のレンズ状の集合体を形成して いる. 片理の発達は悪く,全体的に岩相変化に乏しい. 局所的に石英脈,方解石脈が多い部分もある. 本研究で詳細に検討したのはNa88042604の地点で採集した試料である.

淡紅色緑簾石は,最大約0.8mm程度の自形~半自形 で,包有物を多く含む.鏡下ではやや赤みがかってい る程度で,多色性ははっきりしない.複雑な累帯構造 や砂時計構造が見られる(第3図A).また,平行連晶 状の構造も見られる(第3図B).光学性は負,光軸角 は2V=74~79°で,緑簾石の値の範囲におさまり, 吉村・桃井(1963)による山中鉱山産ウイザマイトの 値とも一致する.

化学分析

淡紅色緑簾石の化学組成を検討するために, JEOL JXA-733マイクロプローブアナライザーによって分

 第1図 位置図および美都地域の地質図(島根県地質図編集委員会,1982)
 1,沖積層2,古第三紀火山岩類3,古第三紀花崗岩類4,閃緑岩類5,白亜紀花崗岩類6,白亜紀火山 岩類7,鹿足層群8~11,三郡変成岩類(8,泥質片岩9,砂質片岩10,珪質片岩11,緑色片岩)12,断層

第2図 調査地(板井川地域)の地質図(新宮ほか (1989)を一部修正)

析した.加速電圧は15 kV, 試料電流は0.02μ Aの条 件である.

第1表に EPMA 分析結果を示す.分析点A1~7 の位置を第3図Aに,分析点B1~10を第3図Bに示 す.構造式ではMnがAl,Fe³⁺とともに6配位席を占め ていると考えると都合がよいので,Mn³⁺として示す.

砂時計構造をしている淡紅色緑簾石では、Fe のよ り多いセクターと少ないセクターに分かれており、ピ スタサイト (Ps) 成分が 4 mol %程度異なるが、 Mn や Mg の含有量には傾向が見られない.また、平 行連晶状の構造を示すものも、Fe のより多い部分と 少ない部分からなり、両者の Ps 成分の差はやはり 4 mol %程度である.

Mn 含有量は全 Mn をMn₂O₃ としても0.8 wt.%以 下であり,山中鉱山産のもの(MnO=1.08 wt.%)よ りさらに少ない.

熱分析

淡紅色緑簾石の含水量を決定するため、島津熱分析

第3図 淡紅色緑簾石の反射電子像写真
 白線の長さは100µm
 A 砂時計構造の淡紅色緑簾石
 点1~7は分析値A1~A7の分析位置
 B 平行連晶状の淡紅色緑簾石
 点1~10は分析値B1~B10の分析位置

新宮敦弘・赤坂正秀・山口佳昭

第1表 淡紅色緑簾石の化学組織

	A1	A2	A3	A4	A5	A6	Α7	B1	B2
SiO₂	37.21	38.53	38.49	38.36	38.70	38.27	38.50	39.02	38.86
TiO₂	0.17	0.13	0.16	0.06	0.14	0.13	0.14	0.10	0.15
A1203	26.08	26.51	25.44	25.12	27.14	25.63	27.08	28.05	26.76
Fe ₂ 0 ₃ *	* 7.56	7.99	9.46	9.50	7.48	9.01	7.76	6.53	8.13
Mn ₂ O ₃ *	**0.59	0.48	0.68	0.77	0.74	0.46	0.49	0.51	0.33
MgO	0.31	0.24	0.35	0.37	0.26	0.35	0.25	0.15	0.28
CaO	21.75	23.72	23.72	23.60	23.39	23.72	23.63	23.50	23.53
Na ₂ 0	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.04
K20	0.03	0.00	0.02	0.02	0.02	0.03	0.02	0.04	0.02
Total	93.75	97.66	98.37	97.85	97.91	97.62	97.91	97.94	98.12
Catior	ns per '	12.5 oxy	/gens						
Si	3.028	3.022	3.018	3.026	3.021	3.017	3.008	3.029	3.02
A1	2.501	2.450	2.351	2.336	2.497	2.381	2.494	2.566	2.45
Ti	0.010	0.007	0.009	0.003	0.008	0.007	0.008	0.006	0.00
Fe ³⁺	0.463	0.471	0.558	0.564	0.439	0.534	0.456	0.381	0.47
Mn	0.036	0.028	0.040	0.046	0.043	0.027	0.028	0.030	0.02
Ma	0.037	0.028	0.041	0.043	0.030	0.041	0.028	0.017	0.03
Ca	1.896	1.994	1.993	1,995	1,956	2.003	1.978	1.954	1.96
Na	0.008	0.007	0.006	0.006	0.006	0.005	0.006	0.005	0.00
ĸ	0.003	0.000	0.001	0.001	0.001	0.002	0 002	0 003	0 00
	7.982	8.007	8.017	8.020	8.001	8.017	8.008	7.991	7.99
Xpa**'	* 0.154	0.159	0.189	0.191	0.147	0.182	0.153	0.128	0.16
	B3	B4	B5	B6	B7	B8	B9	B10	
Si02				20 07					
	39.15	38.77	38.95	39.07	38.45	38.50	38.08	38.26	
Ti02	39.15 0.07	38.77 0.09	38.95	0.09	38.45	38.50	38.08 0.18	38.26 0.19	
TiO ₂ Al ₂ O ₃	39.15 0.07 28.27	38.77 0.09 26.68	38.95 0.13 26.78	0.09 28.35	38.45 0.04 26.65	38.50 0.07 28.06	38.08 0.18 26.55	38.26 0.19 27.83	
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃	39.15 0.07 28.27 * 6.31	38.77 0.09 26.68 8.02	38.95 0.13 26.78 8.15	0.09 28,35 6.28	38.45 0.04 26.65 8.19	38.50 0.07 28.06 6.71	38.08 0.18 26.55 8.55	38.26 0.19 27.83 6.55	
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ ' Mn ₂ O ₃ '	39.15 0.07 28.27 * 6.31 **0.65	38.77 0.09 26.68 8.02 0.33	38.95 0.13 26.78 8.15 0.33	0.09 28,35 6.28 0.50	0.04 26.65 8.19 0.38	38.50 0.07 28.06 6.71 0.42	38.08 0.18 26.55 8.55 0.32	38.26 0.19 27.83 6.55 0.32	
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ , Mn ₂ O ₃ , Mn ₂ O ₃ ,	39.15 0.07 28.27 * 6.31 **0.65 0.17	38.77 0.09 26.68 8.02 0.33 0.26	38.95 0.13 26.78 8.15 0.33 0.26	0.09 28,35 6.28 0.50 0.14	38.45 0.04 26.65 8.19 0.38 0.29	0.07 28.06 6.71 0.42	38.08 0.18 26.55 8.55 0.32 0.35	38.26 0.19 27.83 6.55 0.32 0.23	
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Mn ₂ O ₃ MgO CaO	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18	38.77 0.09 26.68 8.02 0.33 0.26 23.62	38.95 0.13 26.78 8.15 0.33 0.26 23.34	39.07 0.09 28,35 6.28 0.50 0.14 23.37	38.45 0.04 26.65 8.19 0.38 0.29 23.61	38.50 0.07 28.06 6.71 0.42 0.20 23.58	38.08 0.18 26.55 8.55 0.32 0.35 23.28	38.26 0.19 27.83 6.55 0.32 0.23 23.61	
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ ' Mn ₂ O ₃ ' MgO CaO Na ₂ O	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03	38.26 0.19 27.83 6.55 0.32 0.23 23.61	
TiO_2 Al_2O_3 Fe_2O_3 Mn_2O_3 MgO CaO Na_2O K_2O	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02	0.09 28,35 6.28 0.50 0.14 23.37 0.03	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05	
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ ' Mn ₂ O ₃ ' MgO CaO Na ₂ O K ₂ O Total	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00	0.09 28,35 6.28 0.50 0.14 23.37 0.03 0.03 97.86	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07	
TiO ₂ Al ₂ O ₃ Fe_2O_3 ' Mn ₂ O ₃ ' MgO CaO Na ₂ O K ₂ O Total Catior	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 0.03 97.86	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07	
TiO_{2} $A1_{2}O_{3}$ $Fe_{2}O_{3}$ $Mn_{2}O_{3}$ MgO CaO $Na_{2}O$ $K_{2}O$ $Tota1$ $Catior$ Si	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 ns per 2 3.037	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 oxs	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 97.86 3.030	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07	
TiO_{2} $A1_{2}O_{3}$ $Fe_{2}O_{3}$ $Mn_{2}O_{3}$ MgO CaO $Na_{2}O$ $K_{2}O$ $Tota1$ $Catior$ Si $A1$	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 oxy 3.030 2.458	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 0.03 97.86 3.030 2.591	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573	
TiO_{2} $Al_{2}O_{3}$ $Fe_{2}O_{3}$ $Mn_{2}O_{3}$ MgO CaO $Na_{2}O$ $K_{2}O$ $Total$ $Catior$ Si Al Ti	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 ms per 2 3.037 2.584 0.004	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 0×5 3.030 2.458 0.005	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460 0.007	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 0.03 97.86 3.030 2.591 0.005	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463 0.002	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580 0.004	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463 0.010	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573 0.010	
TiO_{2} $A1_{2}O_{3}$ $Fe_{2}O_{3}'$ $Mn_{2}O_{3}'$ MgO CaO $Na_{2}O$ $Tota1$ $Catior$ Si $A1$ Ti Fe^{3}	39.15 0.07 28.27 * 6.31 ***0.65 0.17 23.18 0.04 0.02 97.86 3.037 2.584 0.004 0.368	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 oxs 3.030 2.458 0.005 0.471	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460 0.007 0.478	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 97.86 3.030 2.591 0.055 0.366	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463 0.002 0.483	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580 0.004 0.394	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463 0.010 0.506	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573 0.010 0.386	
TiO_{2} $Al_{2}O_{3}$ $Fe_{2}O_{3}$ $Mn_{2}O_{3}$ MgO CaO $Na_{2}O$ $K_{2}O$ $Total$ $Total$ $Catior$ Si Al Ti Fe^{3+} Mn^{3+}	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 97.86 0.038	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 oxy 3.030 2.458 0.005 0.471 0.019	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460 0.007 0.478 0.019	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 97.86 3.030 2.591 0.005 0.366 0.029	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463 0.002 0.483 0.022	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580 0.004 0.394 0.024	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463 0.010 0.506 0.019	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573 0.010 0.386 0.019	
TiO_{2} $Al_{2}O_{3}$ $Fe_{2}O_{3}$ $Mn_{2}O_{3}$ $Mn_{2}O_{3}$ MgO CaO $Na_{2}O$ $K_{2}O$ $Total$ $Catior$ Si Al Ti Fe^{3+} Mn^{3+} Mg	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 7.86 7.86 7.86 7.86 7.86 7.86 7.86	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 oxs 3.030 2.458 0.005 0.471 0.019 0.030	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460 0.007 0.478 0.019 0.030	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 97.86 3.030 2.591 0.005 0.366 0.029 0.016	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463 0.002 0.483 0.002	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580 0.004 0.394 0.02	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463 0.010 0.506 0.019	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573 0.010 0.386 0.019	
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ ' Mn ₂ O ₃ ' Mn ₂ O CaO Na ₂ O K ₂ O Total Catior Si Al Ti Fe ³⁺ Mn ₃ ' Mg Ca	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 0.04 0.02 97.86 0.037 2.584 0.004 0.368 0.038 0.020 1.926	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 oxy 3.030 2.458 0.005 0.471 0.019 0.030 1.978	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460 0.007 0.478 0.019 0.030 1.949	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 97.86 3.030 2.591 0.005 0.366 0.029 0.016 1.942	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463 0.002 0.483 0.022 0.483 0.022 0.34 1.982	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580 0.004 0.394 0.024 0.023 1.071	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463 0.010 0.506 0.019 0.041	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573 0.010 0.386 0.019 0.027	
TiO_{2} $A1_{2}O_{3}$ $Fe_{2}O_{3}'$ $Mn_{2}O_{3}'$ MgO CaO $K_{2}O$ $Tota1$ $Cation$ Si $A1$ Ti $Fe^{3}+$ $Mn^{3}+$ Mg Ca Na	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 7.86 7.86 7.584 0.004 0.368 0.038 0.020 1.926 0.006	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 oxy 3.030 2.458 0.005 0.471 0.019 0.030 1.978 0.026	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460 0.007 0.478 0.019 0.030 1.949 0.006	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 97.86 3.030 2.591 0.005 0.366 0.029 0.016 1.942 0.025	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463 0.002 0.483 0.022 0.034 1.983 0.022	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580 0.004 0.394 0.023 1.971 0.225	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463 0.010 0.506 0.019 0.041 1.963	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573 0.010 0.386 0.019 0.027 1.984 2.222	
TiO_{2} $Al_{2}O_{3}$ $Fe_{2}O_{3}'$ $Mn_{2}O_{3}'$ MgO CaO $Na_{2}O$ $K_{2}O$ $Total$ $Catior$ Si Al Ti Fe^{3+} Mg Ca Na k	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 7.86 7.584 0.004 0.368 0.020 1.926 0.004	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 ox; 3.030 2.458 0.005 0.471 0.019 0.030 1.978 0.006	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460 0.007 0.478 0.019 0.030 1.949 0.006	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 97.86 3.030 2.591 0.005 0.366 0.029 0.016 1.942 0.005	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463 0.002 0.483 0.022 0.034 1.983 0.007	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580 0.004 0.394 0.023 1.971 0.005	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463 0.010 0.506 0.019 0.041 1.963 0.005	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573 0.010 0.386 0.019 0.027 1.984 0.006	
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ ' Mn ₂ O ₃ ' Mn ₂ O CaO Total Catior Si Al Ti Fe ³⁺ Mn ³⁺ Mg Ca Na K	39.15 0.07 28.27 * 6.31 **0.65 0.17 23.18 0.04 0.02 97.86 7.86 7.86 7.584 0.004 0.368 0.020 1.926 0.006 0.001 7.984	38.77 0.09 26.68 8.02 0.33 0.26 23.62 0.05 0.02 97.84 12.5 oxy 3.030 2.458 0.005 0.471 0.019 0.030 1.978 0.006 0.001 7.998	38.95 0.13 26.78 8.15 0.33 0.26 23.34 0.04 0.02 98.00 /gens 3.036 2.460 0.007 0.478 0.019 0.030 1.949 0.006 0.001 7.986	39.07 0.09 28,35 6.28 0.50 0.14 23.37 0.03 97.86 3.030 2.591 0.005 0.366 0.029 0.016 1.942 0.005 0.002 7.986	38.45 0.04 26.65 8.19 0.38 0.29 23.61 0.05 0.02 97.68 3.015 2.463 0.002 0.483 0.022 0.483 0.022 0.34 1.983 0.007 0.002 8.011	38.50 0.07 28.06 6.71 0.42 0.20 23.58 0.03 0.02 97.59 3.003 2.580 0.004 0.394 0.024 0.023 1.971 0.005 0.001 8.005	38.08 0.18 26.55 8.55 0.32 0.35 23.28 0.03 0.02 97.36 2.997 2.463 0.010 0.506 0.019 0.041 1.963 0.005 0.001 8.005	38.26 0.19 27.83 6.55 0.32 0.23 23.61 0.05 0.03 97.07 3.001 2.573 0.010 0.386 0.019 0.027 1.984 0.002 8.008	

* Total Fe as Fe₂O₃ ** Total Mn as Mn₂O₃ *** X_{Pa}=Fe³⁺/(Al+Fe³⁺+Mn)

加熱速度 10℃/min, Pt/Pt-13Rh 熱電対

装置 DT-40・DTG システムを用いて, 示差熱分析・熱重 量測定を行った.

粉砕した試料を60#(0.25mm)のふるいにかけ, 双眼顕 微鏡下で分離し, 純粋な試料を得た. 18.75mgの試料を10 ℃/min の昇温速度で, 1200℃まで過熱した.

分析結果を第4図に示す.吸熱ピークが,504,790, 932,973,1199℃に見られる.504℃の吸熱ピークは,こ れまでのデータ(MACKENZIE,1957;SMYKATZ-KLO-SS,1974)を検討したが,該当するものがなく,0.64 wt.%の減量がおこっていることから,淡紅色緑簾石 中の包有物によるものと考える.790℃の吸熱ピーク の原因は不明である.減量はおこっていない.1199℃ の吸熱ピークも今のところ原因がはっきりわからない が、減量が起こっていないことから、淡紅色緑簾石の 脱木によるピークでないことは明らかである. 過熱 試料のX線粉末回折線より,ほとんどが transitional anorthite であることから, anorthite の転移に関係 したものである可能性がある. 吸熱ピークと減量の関 係から,932および973℃のピークが淡紅色緑簾石の 脱木によるものであることがわかる. MACKENZIE (1957)は,938および987℃に緑簾石の吸熱ピークが 生じることを報告しているが,今回の結果は,これと 一致する. ゾイサイトでは938~998℃に1本の吸熱 ピークしか生じないのに緑簾石では2本の吸熱ピーク が現れる原因については,MACKENZIE が少量のゾイ サイトのためではないかと述べているが、わかってい ない. 吸着水による減量0.46 wt.%と,包有物による 減量0.64 wt.%を試料の重量から差し引いて淡紅色緑 簾石の含水量を求めると,1.82 wt.%となり,98 wt.% 前後を示す EPMA 分析結果と調和的である.

X線粉末回折

熱分析試料について,X線粉末回折を行った.シリ コンを標準にして補正した結果を第2表に示す. (113),(020),(120),(311),(202),(104),(203),

本研究				吉村・桃井(1963)		本研究				吉村・桃井(1963)		
1/10	d (obs)	d(calc)	hkl	1/10	d (obs)	1/10	d (obs)	d(calc)	h k l	1/10	d (obs)	
4 8 19 31 20 13 5 5	9. 14 8. 025 5. 048 4. 998 4. 023 3. 999 3. 752 3. 483	9. 17 8. 024 5. 058 5. 015 4. 012 3. 983 3. 758 3. 484	001 100 101 102 200 202 111 211	5 3 16 27 11 7 21	7. 965 (100, T01) 5. 027 4. 998 4. 011 3. 984 3. 755 3. 480	10 4 4 8 12 8	1. 984 1. 954 1. 922 1. 880 1. 874 1. 866	1. 982 1. 953 1. 922 1. 879 1. 876 1. 875 1. 870 1. 870	$ \begin{array}{r} 105 \\ 305 \\ 213 \\ 222 \\ 114 \\ 123 \\ \overline{124} \\ \overline{224} \\ \overline{115} \\ \overline{125} \\ \overline{115} \\ \overline{115}$	3 3 4 5 26	1. 9824 1. 9530 1. 920 1. 8734 1. 8707 (T24, 030)	
48 19 35 24 100	3. 402 3. 205 3. 060 2. 921 2. 896	3. 402 3. 205 3. 057 2. 919 2. 895 2. 807	102 201 003 302 113 020	21 27 15 85	3. 400 3. 205 3. 058 2. 894 (301, 112, 113)	4	1.860	1.869 1.860	115 312	4 4 7 5	1. 8036 (401) 1. 7772 (324) 1. 7695 (502) 1. 7430	
40 10 35 30 10	2. 808 2. 782 2. 685 2. 673 2. 649	2. 784 2. 685 2. 684 2. 675 2. 650	211 013 021 300 120	18 51 20	2. 607 2. 783 2. 682 2. 652 (300, 303, 120)	4 10 14 8	1. 742 1. 706 1. 699 1. 689 1. 672	1. 742 1. 704 1. 701 1. 690 1. 672	$\frac{\overline{4}22}{\overline{4}15}$ $\frac{204}{\overline{2}06}$ $\frac{306}{\overline{3}06}$	8 7 3	1. 7011 (204, 504) 1. 6874 (512) 1. 6707	
22 38 19	2. 595 2. 529 2. 508	2. 548 2. 596 2. 529 2. 507 2. 507	121 $\overline{311}$ 202 $\overline{104}$	31 26 7 10	2. 596 2. 529 2. 516 (103) 2. 506	8 8	1. 642 1. 635 1. 624	1. 642 1. 637 1. 636 1. 636 1. 624	105 133 511 106 124 724	38 17	1.6352 1.6238	
8 20 10 4 8	2. 448 2. 402 2. 391 2. 372 2. 304	2. 507 2. 450 2. 400 2. 394 2. 373 2. 306	$ \begin{array}{r} 204 \\ \overline{1}22 \\ \overline{3}13 \\ 022 \\ \overline{2}21 \\ 212 \\ \end{array} $	13 40 10	2. 449 (121, T22) 2. 398 2. 373	20 10	1.588 1.577	1. 524 1. 588 1. 577 1. 576 1. 576	$\frac{424}{406}$ $\frac{331}{332}$ 115	3 3 17	1.6127(313,322) 1.5961(033) 1.5750	
20 8	 2. 293 2. 283 2. 102 	2. 294 2. 293 2. 289 2. 289	304 004 114 214	205	2. 295 (220, 004, 113, 304, 222)	8 6 10 10	1.571 1.544 1.540 1.528	1.571 1.543 1.541 1.530	T16 510 412 333	10 5	1. 5409 1. 5280 (333, 006)	
25 8 8	2. 162 2. 151 2. 125	2. 163 2. 154 2. 123 2. 122	$\frac{401}{403}$ 314 014	21	2. 101 (122, 123)	10	1. 455	1. 528 1. 528 1. 455 1. 455	416 224 331 524	15	1 4549	
10 8 8	2. 112 2. 100 2. 066	2. 112 2. 103 2. 068 2. 065	221 223 023 412	17	2. 067	6	1. 447	1. 499 1. 448 1. 447	226 307	5 6 23	1. 4482 (034) 1. 4351 (326) 1. 4022	
-19	2. 045 2. 006	2.045 2.006	400	18 3 8	2. 045 2. 026 (321) 2. 006	10	1. 403	1. 404 1. 403 1. 392 1. 391	$ \begin{array}{r} 040 \\ 215 \\ 422 \\ \overline{107} \end{array} $	18	1. 3921 (520)	
8	1. 991	1.991 1.990	$\overline{4}04$ 104	3	1. 9898	L				L		

第2表 淡紅色緑簾石のX線粉末回折線 (CuK α, 30kV, 15mA)

(400), ($\overline{4}06$)の反射を使用して格子定数を測定した 結果, a=8.884 (4), b=5.615 (3), c=10.153(5) Å, $\beta=115.41$ (2)°, V=457.4 (4) Å³, の値を得た. X線粉末回折線および格子定数は Fe の 比較的少ない緑簾石のものに近く,山中鉱山産のウイ ザマイトとほぼ同じ値である.

議論とまとめ

 $Ca_2 Al_3 Si_3 O_{12}(OH)$ (clinozoisite) – $Ca_2 Fe_3^{3+} Si_3 O_{12}(OH)$ (pistacite)-Ca2Mn3+Si3O12(OH) (piemontite)系の鉱物 は, Al, Fe³⁺, Mn³⁺の含有量によって色, 光学性, 格 子定数などの諸性質が変化する.このグループの 中で, 淡紅色~紅色を呈するのは一般に紅簾石 (piemontite) と呼ばれる Mn³⁺ に富む種類であるが, Mn に乏しく Al に富むクリノゾイサイトや, Fe に富 む緑簾石が淡紅色を呈する場合がある.淡紅色を呈す るゾイサイトが桃簾石と呼ばれることから、淡紅色の クリノゾイサイトも桃簾石(斜桃簾石)と呼ばれるこ とが多い(例えばTAKESHITA and MATSUMOTO, 1979 など).しかし, 竹下ほか(1989)は, 淡紅色を示す二 軸性正のクリノゾイサイトから二軸性負の緑簾石まで を斜桃簾石としている. また, BREWSTER (1825) の命 名によるウイザマイトは HUTTON (1938) によって Mn の少ない紅簾石であることが明らかにされたた め,現在ウイザマイトという鉱物名は使用されない. 以上のように,色・光学性・化学組成による鉱物名に は多少混乱があるので,本論で記載した淡紅色を呈す る緑簾石族鉱物には桃簾石, ウイザマイトという鉱物 名を用いない、本鉱物は、化学組成、格子定数から緑 **簾石とよぶのが妥当と考え、紅簾石ではなく淡紅色緑** 簾石と記した.

二川累層の珪質片岩中にはおもにバラ輝石,スペサ ルティンからなるマンガン鉱床が存在する(新宮ほ か,1989)が,今回報告した泥質片岩中の淡紅色の脈 あるいはレンズは Mn がきわめて少ない淡紅色緑簾石 の濃集部であったことは興味深い.

兵庫県山中鉱山産ウイザマイトは,変質安山岩中に 脈または斑点を成して産出し,マンガン鉱化作用に先 行する熱水期に母岩の変質と同時に生成したと考えら れている(吉村・桃井,1963).また,長崎県五島中通 島の桃簾石は,貫入岩の影響をうけた珪長質火山砕屑 岩中に産出し,緑簾石が熱水条件下で桃簾石に変化し たと考えられている(TAKESHITA and MATSUMOTO, 1979). 本論では, 淡紅色緑簾石の成因を解く十分なデータ を得ていないが,小林・渡辺(1985)は,本地域の三 郡変成岩類が白亜紀酸性深成岩による熱変成作用を受 けており,泥質岩には一般に黒雲母,白雲母,緑簾 石,ザクロ石,斜長石などが形成されていると述べて いる.淡紅色緑簾石も産状から同様の成因が考えられ る.しかし,本地域に分布する小規模の貫入岩の影響 がないかどうか,検討を要する.

謝 辞

国立科学博物館加藤昭博士には鉱物名について御教 示頂いた.島根大学理学部高須晃博士には,三郡変成 岩について御教示頂いた.農学部古野毅博士,上原徹 氏には,EPMA使用にあたりお世話になった.以上の 方々に厚くお礼申し上げる.

文 献

- BREWSTER, D., 1825 : Description of withamite, a new mineral species found in Glen Coe, Edinburgh. Jour. Sci., 2, 218-221.
- HUTTON, C. O., 1938 : On the nature of withamite from Glen Coe, Scoland. Mineral. Mag., 25, 119 -124.
- 小林英夫・渡辺暉夫,1985:三隅-美都地域.島根県 の地質,36.島根県.
- MACKENZIE, R. C., 1957 : *The differential thermal investigation of clays*. 456p., The central press, London.
- 西村祐二郎・井上 保・山本博達,1977:三郡帯,と くに層序と変成作用について.三波川帯,257-282. 広島大学出版研究会.
- 岡村義彦・西村祐二郎・長谷 晃・添田 晶・沖村雄 二・広渡文利・木村慶信・赤塚政美・井上多津男・ 安居院弘輔・大谷顕一・弧島章一郎・1975:島根県 益田地域の三郡変成岩類.山口大学教育学部研究論 叢, 25, 19-36.
- 島根大学地質図編集委員会,1982:島根県地質図(20 万分の1).島根大学理学部地質学教室.
- 新宮敦弘・赤坂正秀・山口佳昭,1989:島根県美都町 北東部三郡変成岩中に発見されたマンガン鉱石・山 陰地域研究(自然環境),第5号,67-74.
- SMYKATS-KLOSS, W., 1974 : Differential thermal analysis. 185p., Springer-Verlag, Berlin Heidelberg New York.

.

- TAKESHITA, H. and MATSUMOTO, Y., 1979 : Thulite and associated minerals from the Nakadori island, Goto, Nagasaki prefecture. J. Japan. Assoc. Min. Petr. Econ. Geol., 74, 235-244.
- 竹下 壽・松本徰夫・山岸猪久馬・吉田茂男・吉澤壮 夫・宮下平司・柴本芳一,1989:長野県入軽井沢に おけるグリーンタフ中の貫入岩のエピドート変質に

ついて-とくに斜桃簾石について-.地質雑,95,335-338.

- 吉村豊文・桃井 斉, 1963: 兵庫県山中鉱山産ウイザ マイト. 九州大学理学部研究報告 地質学之部, 6, 129-134.
- 吉田鎮男,1981:チャートラミナイト:岩石学的記載 と本邦地向斜における産状.地質雑,87,131-141.