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Abstract homogeneous systems are characterized as subsets of their enveloping groups. 

The results are applied to construction of analytic homogeneous systems tangent to the given 

Lie triple algebras 

lzatrodwctiom 

As a slight generalization of homogeneous loops in [1], we have. introduced the 

concept of homogeneous systems and investigated in [3] several fundamental prop-

erties of analytic homogeneous systems and their tangent Lie triple algebras. Let ~ 

be a real Lie triple algebra of finite dimension, and ~~ = ~ ~ S~ an enveloping Lie algebra 

by a Lie algebra S~ of derivations of ~ . To construct an analytic homogeneous system 

(G, n) with its tangent Lie triple algebra ~;, it is natural to consider a Lie group A 

and its subgroup K with their Lie algebras ~~ and ~, respectively, and to set G = AIK. 

In this paper, we investigate how an abstract homogeneous system (G, n) is embedded 

into its enveloping group A = G x K. at e e G. We apply the results to the case of 

analytic homogeneous systems and find some conditions for G = A/K to admit an 

analytic homogeneous system whose tangent Lie triple algebra is isomorphic to a 

given Lie triple algebra R (Theorem 2). The terminology used in this paper are 

referred to [3]-

S I . Abstract homogemeous systems embedded in their emvelopiug groups 

In this section we are concerned with abstract homogeneous systems. Let 

(G, ~) be an abstract homogeneous system on a set G with a fixed element e. We 

recall the enveloping groups of (G, n) (cf. [3-IV]). Let /1 be the binary operation on 

G given by p(x, y) = n(e, x, y) for x, y e G. Under this multiplication, e is a two-

sided unit and the element x ~ I = n(x, e, e) is the unique two-sided inverse of x. If 

we denote by L*y = //(x, y), the set of all left inner mappings L*,y = L~(1* y)L*Ly = 

n(x~i, e)n(y, x~1)n(e, y), x, y e G, generates a subgroup A. (left inner mapping group) 

of the isotropy subgroup A. of Aut (n). Let K. be a subgroup of A. containing A.. 

The set A = G x K. forms a group under the group multiplication 

(1.1) (x, og) (y, P) = (//(x, oey), L*,.yoefi) 
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for x, y e G and oc, P e K.. The group A is called the enveloping group of (G, n) by 

the group K.. The unit of A is (e, IG) and the element (oc~1(x~1), cc~1) is the inverse 

of (x, oc) e A. This group has been given originally for homogeneous loops [1]. By 

identifying G with the subset G x { I G} of the enveloping group A we can characterize 

homogeneous systems as subsets of groups, that is ; 

PROPOSITION 1: Let (G, n) be an abstract homogeneous system with a fixed 

element e, A=Gx K. an enveloping group of (G, n) by a group K. as above. Then, 

the subgroup K= {e} x K. and the subset G= G x {1G}, x=(x, IG), satisfy the following 

conditions (i)~iv) : 

( i ) A=GK (uniquelyfactored). 

(ii) G n K={e}, where e=(e, IG) is the unit ofA. 

(iii) G-1=G. 

(iv) (adk)G=Gfor k e K. 
Conversely, for a subgroup K of an abstract group A, if a subset G of A satisfies 

(i)~iv) above, then G admits a homogeneous system n. In this case, for the normal 

subgroup Ko = {k e K I kx =xk, x e G} of A, the quotient group A/Ko is isomorphic to 

an envenloping group G x (KIKO) of (G, n). 

PRooF. Let A = G x K. be an enveloping group of (G, n). Then, (i)~iv) follow 

drrectly from the definition (1.1) of the group multiplication of A. Conversely, assume 

that a subset G and a subgroup K of an abstract group A satisfy the conditions (i)~iv). 

Denote by p : A -> G and q : A ~･ K the projections to G-factor and K-factor, respec-

tively, of the elements of A in the factorization (i). We consider two operations 

/1 : G x G~,G and oc : G x G->K given by //(x, y) = p(xy) and oe(x, y) = q(xy) for x, y e G. 

The following are checked easily for /1 and oe : (a) p(e, x) = p(x, e) = x, oc(e, x) = o((x, e) 

=e; (b) //(x~i, x)=p(x, x~1)=e, oe(x~1,x)=0c(x, x~1)=e; (c) p(x~1, p(x, y))=y, 

oe(x, y) ~ I = oc(x ~ I , p(x, y)). Moreover, the condition (iv) implies (d) p((ad k)x, 

(ad k)y) = (ad k)p(x, y), oc((ad k)x, (ad k)y) = (ad k)oe(x, y) and (e)L*,y = ad oc(x, y), where 

L*,y = L~(1* y)L*Ly denotes the left inner mapping of the multiplication L*y = p(x, y) in G. 
Now, we ~efine a ternary operation n : G x G x G~G by 

(1.2) n(x, y, z)=L*//(~~ly, L~lz) for x, y, z e G 

In the same way as the proof of Theorem I in [2] , we can show that n satisfies the 

axiom of homogeneous systems. Since n(e, x, y) = /1(x, y) holds in (1.2), (d) and (e) 

imply that K. = (ad K)lG is a subgroup of Aut (n) Ieaving e fixed and containing the left 

inner mapping group A* of /1. Thus the group A/Ko is isomorphic to the enveloping 

group G x K. of (G, n) for K. = KIKo' q. e. d 
In the following, we describe the conditions (i~(iv) in Proposinon 1 In terms of 

the projections p : A->G and q : A~K. Let A be an abstract group, K a subgroup of 

A and G = A/K the left cosets of A modulo K. Denote by i : K->A the inclusion map 
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and by p : A->G the natural projection 

PROPOSITION 2. For the sequence 

K-' A-P G=A/K 
thefollowing (1) and (2) are mutually equivalent: 

(1) There exists a map j : G->A such that (i) pj = IG, (ii) jp(e) = e, (iii) (jp(a))~1 

=jp((jp(a))~ 1) and (iv) jp(ka) = (ad k)jp(a) for a e A and k e K, where e denotes the 

unit of A. 

(2) There exists a map q : A->K such that (i) qi=1K, (ii) q(q(a)a~1)=e, (iii) 

q(ak)= q(a)k and q(ka)=kq(a), for a e A and k e K. 
If either of (1) and (2) occurs, ihen each of the maps j and q determjnes the other by 

thefollowing relation 

(1.3) (jp(a)) (iq(a)) = a, a e A , 
wh.ich gives q~ 1(e)=j(G). 

PRooF. By comparing the conditions in (1) and (2) under the relation (1.3), 

we get the proposition directly. q. e, d. 
Propositions I and 2 imply the following theorem : 

THEOREM 1. A set G admits a homogeneous system n: G x G x G->G if and only 

if any one of the following is satisfied for a group A and a subgroup K of A: 

(1) Under an injection,j: G->A, G can be identlfied with a subset ofA satisfying 

(i)~iv) of Proposition 1 

(2) G can be regarded as the left cosets A/K and there exists a map j: G->A 

which satisfies the condition (1) of Proposition 2. 

(3) G can be regarded as the left cosets A/K and there exists a map q : A->K 

which satisfies the condition (2) of Proposition 2 

PRooF. By virtue of Propositions I and 2, it is sufiicient to show that the subset 

j(G) of A satisfies (i)-(iv) of Proposition I if and only if a surjection q : A ->K with 

q ~ 1(e) =j(G) satisfies the conditions (i)~iii) in (2) of Proposition 2. For an injection 

j : G~'A, suppose that the subset j(G) of A satisfies (i)~iv) of Proposition I . Then, 

the factorization A =j(G)K induces the natural projection q : A -> K of A into the K-

factor. For any a e A Iet x and k = q(a) be the j(G)-factor and K-factor of a, that is, 

a=xk, x ej(G), keK. We have q(q(a)a~1)=q(kk-1x~1)=e since x~1ej(G). For 

any kl e K, q(akl)=q(xkkl)=kkl=q(a)kl and q(klak~l)=q((klxkll)(klkkll))= 
klq(a)kl I holds since (.ad kl)j(G) =j(G). The condition qi=1K is clearly sat-

isfied and we see that the map q satisfies (2) of Proposition 2 with j(G) = q ~ 1(e). Con-

versely, suppose that there exists a surjection q : A -> K satisfying the conditions (i)~iii) 
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in (2) of Proposition 2 and that the given set G is identified with A/K, for a group A 

and its subgroup K. Then, the relation (1.3) implies q ~ l(e) =j(G) and the unique 

factorization A =j(G)K with j(G) n K = e follows. If x ej(G), then q(x) = e and 

q(q(x)x~1)=e, that is, x~1eq~1(e) =j(G). Moreover, for any k e K, q((ad k)x) = 

(ad k)q(x) = (ad k)e= e and we get (ad k)G = G. q. e. d. 

S 2. Comstructiom of amalytic homogemeous systems from their tamgemt Lie triple 

aigebras 

Let ~ be a finite dimensional real Lie triple algebra with the bilinear multipli-

cation X Y and the trilinear multiplication D(X, Y)Z for X, Y, Z e ~. Let Der (~) 

denote the derivation algebra of R, and ~~ = ~; ~ Der (~) be the enveloping Lie algebra 

of G by Der (~5). Let A be the connected and simply connected Lie group whose 

Lie algebra is ~:~, and K the connected Lie subgroup of A whose Lie algebra 

is Der (~;). Then, K is a closed subgroup of A and G=A/K is a reductive homo-' 

geneous space of K . Nomizu [4] ･ Under the natural projection p : A ~' G, the tangent 

space T.(G) at the origin e = p(K) is identified with ~ . Indeed, the Lie triple algebra 

~ is isomorphic to the Lie triple algebra T.(G) whose multiplications are given by 

XY= S.(X, Y) and D(X, Y)Z =R.(X, Y)Z for X, Y, Z e T.(G), where S (resp. R) is 

the torsion (resp. curvature) of the canonical connection of the reductive homogeneous 

space AIK. 

THEOREM 2. Let ~ be a finite dimensional real Lie triple algebra, ~r=~;e) 

Der (~) the enveloping Lie algebra of ~ by the derivation algebra Der (

The simply connected homogeneous space G=A/K obtained above admits an analytic 

homogeneous system n if there exists an analytic map j: G->A sati~',fying the con-

ditions (i)~iv) in (1) of Proposition 2, or an analytic map q : A->K satisfying (i)~iii) 

in (2) of Proposition 2. In this case, the tangent Lie triple algebra of (G, n) is iso-

mol'phic to the given Lie triple algebra ~;. 

PRooF. Suppose that there exists an analytic map j : G->A satisfying (i) pj = I G, 

(ii) jp(e) = e, (iii) (jp(a)) ~ I =jp((jp(a) ~ 1) and (iv) jp(ka) = (ad k)jp(a) for a e A and 

k e K. By (i) we see that j is an immersion and j(G) is an analytic submanifold of A 

On the other hand, Proposi~ion 2 implies that there exists a map q : A -> K determined 

by the relation (1.3) for the given map j, i.e., iq(a) =(jp(a))~1a, a e A. This relation 

shows that the map q is analytic. Conversely, if the map q in (2) of Proposition 2 is 

grven and analytic, then the map j determined by (1.3) is analytic since the map jp 

is so. 

Now, assume that there exists such a map j (or q). By Theorem 1, there exists a 

homogeneous system n on G given by (1.2), and it is analytic since p(x, y) = p(xy) is 

analytic in (x, y). The left inner map of // is given by L*,y = ad oe(x, y), where cc(x, y) = 
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q(xy) is analytic in (x, y). Let K. = (ad K)IG be the group of automorphisms of (G, n) 

generated by the inner automorphisms ad k (k e K) restricted on G. Then, K* is a 

connected Lie group containing the left inner mapping group A. of (G, n). Let A = 

G x K. be the enveloping Lie group of (G, n) by K.. The map ~ : A-A defined by 

~(xk) = (x, IG)(e, ad klG) for a = xk, x e G, k e K, is an analytic homomorphism of A 

onto A. The kernel of ~ consisting of Ko = {keK I kx = xk, x e G} is a discrete sub-

group of K since the Lie algebra of K is the derivation algebra Der ((~) of ~ . Thus, we 

have an isomorphism d~ of the Lie algebra ~~ = ~5 R Der (~) onto the enveloping Lie 

algebra ~~ = ~ e) S~ of the tangent Lie triple algebra ~ of (G, n), where S~ denotes the Lie 

algebra of the Lie subgroup {e} x K. of A. Since ~ maps the Lie subgroup K onto 

{e} x K. and the submanifold G of A onto G x {1G}, d~ maps Der (~;) isomorphically 

onto S~ and d~(~) = (~;. Hence, (d~X)(d~Y) = [d~X, d~Y]~=d~[x, y]~=d~(XY) 
and D(d~X, d~ Y)d~Z = [[d~X, d~ Y]~, d~Z] = [d~[X, Y]D..((~), d~Z] = d~(D(X, Y)Z) 

hold for X, Y, Z e (~;, that is, the Lie triple algebra 

Lie triple algebra ~5 of (G, n). q. e. d. 
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