恈 産 熱 帯 材 の 粘 磞 (第3報) ×2 引張荷重の収縮への影 遯 ☆ 藤田 晋 輔・桜 井 敏 夫 高 橋 ×4 ×43

Akira TAKAHASHI, Shinsuke FUJITA and Toshio SAKURAI Rheological Properties of Tropical Wood III The Effect of Tensile Stresses on Shrinkage

1. 緒 言

我国の木材需要の増大にともなって、輸入材の占める 割合は40%を越え、特に熱帯産材は木材工業の各分野に 多く使用され、その占める地位は重要なものとなってい る.ところで、我国の有用材は50~60種程度であるが、 熱帯産樹種は350種を越える.これらは、組織構造が非 常に複雑なものとされており、物理的指標の一つである 比重で表現すると、0.1 (バルサ)から1.2 (リグナンバ イタ)におよぶから、当然材質の多様性が考えられる. したがって熱帯産材の材質を同一のものとして、特長づ けて記述することは不可能と思われる.

一般に、負荷状態において、木材の含有水分を変化さ せると、木材の変形はその自由な膨潤収縮要素を除いて も、水分定常状態の変形にくらべて異常に大きいことが 知られている。これは古くから、加圧収縮、Drying Set の現象として知られているものであるが、この現象は最 近、Hydrostrain として注目され⁽⁴⁾、活発に研究がなさ れ、乾燥中にいろいろな種類の応力を加えた木材の変形 挙動について、データーの集積が現在もなおなされつゝ ある たとぇば(0).

これまで,熱帯 産材の 熱気乾燥に よる収 縮 経 過 と Drying Set 材の強度特性を検討した⁽⁵⁾ が,本報では引 張荷重下における乾燥中の収縮挙動とそのクリープにつ いて検討する.用材として使用されている熱帯性3 樹種 を実験にもちいたが,樹種数がごくわずかで,この研究 結果から熱帯産材の一つの物理的性質の傾向を結論づけ ようとするものではない.

2. 実験材料と測定方法

試料は前報⁽⁶⁾と同様に次の3樹種のスライス単板である.

 $\mathcal{Z}\mathcal{C} + -\mathcal{N}$ (Anisoptera thurifer)

 $\forall \exists - \nu$ (Minusops neckelii)

マンガシノロ (Shorea phillippinensi.)

試片の形状は JIS. Z-2111-63 に準拠したが, 試片 の厚みは 250μ である. 試片のつかみ部分には添木を接 着した. 試料の作成方法, 形状寸法および実験装置は既 報のとおりである. なお, 乾燥温度と荷重の実験条件は 次の組合わせである.

乾燥温度:40°,60°,80°C

荷 重:30,50,70 gr. (それぞれ 1.13, 1.89, 2.65 kg/cm²)

測定方法は乾燥温度に加熱した生材状態の試片を,乾 燥器中に吊り下げ,試片に引張荷重を加えて,所定時間 の乾燥を行なう.乾燥中の変形は試片の中央平行部分に ついて,読取顕微鏡で測定された.

3. 結果と考察

3.1. 収縮経過

含水率の経過 および 引張荷重下 (0, 30, 50, 70 gr) の収縮経過を Fig. 1 に示す. Fig. 1 の収 縮 経 過 を Fig. 2 に要約して示す. 同図によれば, a 点 は負荷時 の瞬間ひずみ, a ~ b 間は自由水の蒸発期間のため, 収 縮はほとんどなく,引張クリープを示している.次に, b 点ではクリープ速度と収縮速度が相等しい点で,伸縮 せず,平衡に達した点である. b ~ d 間では結合水の蒸 発による著しい収縮を示し,収縮速度がクリープ速度よ

^{※1 (}第2報)日本木材学会誌 15, 271-277 (1969)

^{※2} 本報の一部は第18回日本木材学会大会(1968-4:京都大学) で発表した。

^{※3} 木材加工学研究室 Laboratory of Wood Science and Engineering.

^{※4} 静岡大学農学部林産学科木材物理学研究室

Laboratory of Wood Physics, Faculty of Agriculture, Shizuoka University

Fig. 1. Relation between drying time and shrin -kage under tensile lead, and moisture contents curves.

りはるかに大きくなる. c 点では試片寸法が生材のとき と同じである.

なお, b 点を基準にして, 収縮率, セット量を求める べきだとの提案(のもあるが, 木材乾燥におけるセットは 生材がなんらかの応力をうけて乾燥した時に生じた収縮 量と拘束をうけない時に生じた自由収縮によって得た収 縮量の差と考えるのが妥当であるから, セット量の計算 は生材寸法を基準にとった.

 $d \sim f$ 間は収縮終了期で,とくに $e \sim f$ 間ではクリー プによる増加がほとんどみられない.これは収縮ポテン シャルが大きいことと,この低含水率状態では顕著なク リープを示すほど荷重が大きくないことなどがあげられ る.収縮曲線($b \sim e$)は乾燥温度が高く,荷重が小さ いほど,乾燥時間の短時間側へ移動する.また,収縮量 は荷重が大きいほど,また乾燥温度が低いほど,小さい 値を示している.

次に, Fig. 1 によれば, 全収縮量(率)はスピナー ル,マコーレがほぼ同じであるが,マンガシノロはその 約半分である. これは収縮挙動に対応する材質のちがい によるためと思われる. クリープおよびクリープ・コン プライアンス (Fig. 4, 6)についてマンガシノロだけが 特に低いことはなく,他樹種とほぼ同じ値を示すことか らわかる. また,3樹種とも,乾燥中の荷重が小さい 程,乾燥温度が高いほど,速く収縮し,収縮率が大き く,ほぼ同じ傾向を示す.しかも,含水率が70~100% で収縮開始しているから,このような薄片でも,水分こ う配が著しく,クリープ下の収縮と自由収縮の差は顕著 に現われる.

Fig. 2. Relationship between shrinkage and drying time under tensile load.

Fig. 1 の収縮曲線から, 収縮速度を求め, Fig. 3 に 示す. 同図によれば, 乾燥温度が高く, 荷重が小さいほ ど収縮速度の最大値は大きく, また, 短時間側に移る傾 向がある. 収縮速度の最大値は Table I に示される. 同表によれば, (1) シオジの荷重効果は大きい. (2) 最 大収縮速度はマコーレ, スピナール, シオジともに同じ オーダーであるが, スギとマンガシノロは小さい.

3.2. 乾燥中の引張クリープ

従来,一部の研究では⁽ⁿ⁾,収縮要素とクリープ変形を明 確に分離せず検討がなされている.しかし, Drying Set の効果を示すには,著者らが従来よりおこなったように,

無負荷(自由)収縮量-負荷収縮量=引張クリープ として,収縮要素をのぞいた乾燥中のクリープを求め た.これを Fig.1 に示す.したがって,乾燥中のクリ ープには,

Drying Set (永久変形量) + クリープ回復量 + 瞬間回復量 の3 要素を含んだものである.瞬間回復量はクリープ開 始時の瞬間ひずみの約40%⁽⁶⁾であって,クリーブ回復は 0.1%程度とみられる.Fig.4によれば,乾燥中のクリ ープ曲線は乾燥開始とともに漸増し,繊維飽和点付近で 最大値をとり,乾燥時間の経過とともに漸減して平衡に 達するかまたはわずか増加する.

このような現象は日本産広葉樹材(シオジ)⁽⁴⁾でもみ られるが、日本産針 葉樹(スギ⁽⁴⁾,ヒノキ⁽³⁾⁽⁹⁾)の場合 には、乾燥中のクリープが乾燥とともに増加し、最大に 達したのに、ごくわずかしか減少しないか、または乾燥 終了まで最大値のまゝ平衡に達する.

以上のことから,水分脱着下のクリープ挙動は熱帯産 材を含めた広葉樹材と針葉樹材とでは異なることがわか る.

乾燥開始後、クリープが最大値に達するのは、平均含 水率が30~70%であり、この値は大約スギ20~20%⁽⁴⁾、

Temp		4 0° C				6 0° C				80°C			
Species Load(g)	0	30	50	70	0	30	50	70	0	30	50	70	
Makore	0.30	0.12	0.10	0.08	1.22	0.24	0.23	0.20	1.58	0.50	0.45	0.37	
Spinar1	0.40	0.12	0.08	0.07	1.20	0.26	0.20	0.14	1.74	0.47	0.42	0.38	
Manggasinoro	0.20	0.05	0.04	0.03	0.88	0.16	0.15	0.12	1.18	0.30	0.21	0.18	
Shioji	0.35	0.26	0.26	0.30	0.61	0.47	0.23	0.29	2.17	1.50	1.40	1.12	
Sugi	0.21	0.08	0.06	0.05	0.30	0.20	0.20	0.06	0.76	0.50	0.24	0.11	

Table I. Maximum values of shrinking velocity (%/min)

Fig. 4. Creep during drying.

ヒノキ25~40%⁽⁰⁾,シオジ30~50%⁽⁴⁾に比べて,含水率 が比較的高い.水分平衡下のクリープ⁽³⁾と比べて,乾燥 中でのクリープではピークを持っている.この現象は負 荷によって,水分離脱がおくれ,乾燥後半の収縮性能が クリープを上まわったものとも考えられ,熱帯産材の特 性のひとつと思われる.

Fig. 6. Creep compliance during drying.

同じ乾燥温度の場合,クリープの最大値は荷重が大き いほど大きく,また,荷重が同じ場合,クリープ最大値 が時間的に遅れて温度効果が見られる.

クリープのひずみ速度 dc/dt は Fig. 5 に示される. dc/dt は乾燥経過とともに,はじめは正,のちに負のピ ークをもつ曲線を示し,従来の結果($^{(0)}$ (試片の厚さと時 間の単位が異なるため,直接比較出来ない)とは,同じ 傾向である. クリープ速度への温度効果は明確にあらわ れ,しかも温度の高いほど,短時間側に移り,クリープ 速度も大きい.また dc/dt の荷重効果は60°C,30gの 1 例を除けば,主として,荷重の大きいほど,クリープ 速度が大きい.最大のクリープ速度を示す平均含水率は 50~75% M.C. (80°C),65~80% M.C. (60°C),75 ~80% M.C. (40°C)を,また,最小のクリープ速度 を示す平均含水率は35% M.C. (80°C,60°C)および 20~40% M.C. (40°C) である.木材の水分こう配が 大きいことを考えても,異常変形は比較的高い含水率で ある.

Fig. 6 はクリープ・コンプライアンスを示す. クリ ープ・コンプライアンスにおいても,熱帯産材はシオジ と同じく,ピークを持つ傾向を示し,スギ材の傾向とは 異なる. クリープと同様にクリープ・コンプライアンス も 6 ~ 7 分 (80°C), 10~18分 (60°C) および 20~50 分 (40°C) でピークを示し,その後減少する. また同 一の乾燥温度の場合,がいして,クリープ・コンプライ アンスは低荷重の方が大きい値を示す.

赤外吸収スペクトルによる Drying Set 材の構 造変化の検討

以上述べてきたように、木材の乾燥過程で応力が加わ ると、普通の収縮や水分平衡下のクリープよりも、大き な伸びを示すことが、本研究(熱帯産材)ならびに、従 来の研究(温帯産材)からわかった.このように著しい 変形はどのようなメカニズムで起るのであろうか?また 細胞の高次構造のうちどのオーダーのものが構造変化を うけるのだろうか? などに関して検討されなければな らない.

木材は天然高分子として高次構造をもっているから, Drying Setによる異常変形は,木材の細胞膜構造のうち 1)細胞膜形態それ自身の巨視的変化(マクロな変化)

- 2) ミクロフィブリル相互のスリップによる変化
- 3) セルロース 非晶領域の スリップによる変化 (ミクロ な変化)

が考えられる. このうち, マクロ変形は, 当然, ミクロ 変形の集積, 総合したかたちで現われたものと思われ る. 従来, Drying Set の原因は非晶領域のスリップ,

すなわち, セルロースのミセル相互が滑り, とくに動的 水分のなかでのミセル相互間が転移しやすいと想像し, 結論づけられてきた.事実, 繊維方向に一定の引張荷重 下で乾燥したときも, 繊維直角方向のそれと同様に, 伸 びに 異常変形が みられる⁽¹⁾⁽²⁾.角谷⁽⁶⁾,谷口⁽⁴⁾らがヒノ キとポプラの切片を用いて、繊維方向の負荷中の脱湿に よる異常変形について、分子構造変化の観測手段として 赤外吸収スペクトルを用いて測定した.これによると、

リグニンのベンゼン核振動にもとづく 1490cm⁻¹, リグ ニンのベンゼン核およびピラン核上の CH₂ の変角振動 にもとづく 1460, 1445cm⁻¹, セルロース, ヘミセルロ ースのブリッジC-O-C 振動に もとづく 1160cm⁻¹ などの諸吸収の減少, またセルロースあるいはキシラン のOH 面内振動, セルロースの CH₂ 面外変角振動の 1340~1320cm⁻¹, ピラン環特性結晶性バンドの 1105~ 1035cm⁻¹ の 3 吸収スペクトルの 著しい増加がみられる としている.⁽⁸⁾

そこで、筆者らは、ヒノキ材ミクロトーム 薄片 を 用 い、乾燥中に横引張を加えた.この処理材の赤外吸収ス ペクトル (IR-スペクトル) がどのような変化をする か、またその結果から、木材の微細構造にどのような変 化が生じたかを検討しようと試みた.

気乾状態におけるヒノキ薄片の3断面(Fig.7 (a)※1, (b)※2,および (c)※3)の IR スペクトルを記録(曲線 a)した後,試片を蒸留水中に浸漬し,生材状態になっ てから,試片を60°Cの乾燥器中に入れて,荷重下(約 10g)で乾燥した.乾燥後,試片を気乾状態にもどして から IR スペクトルの記録をした(Fig.7,曲線β). 次いで同じ試料を流動パラフィン中に浸漬したのち, 流動パラフィン添付の試片の IR スペクトルを求めた (Fig.7,曲線 γ).そこで,各断面の IR スペクトル の曲線 α と β を比べると, 乾燥中の 負荷処理によっ て, IR スペクトルの吸収深さにわずかな差異がみられ る. すなわち, Table II に示すように, IR スペクトル 吸収域の減少は3 断面で異なり,また13波長域で吸収深 さや吸収点の移動などに何らかの変化を示した. これら を縦引張における Drying Set の結果⁽⁶⁾⁽⁶⁾ と比較 すれ ば, 1420,1160~1030cm⁻¹だけは一致している. しか しながら, Fig. 8. に示すように,気乾状態における試 片の IR スペクトル (曲線 α) をとり,次いで,試片を 飽水状態にしてから,無負荷下で 60°C の熱気乾燥をす る. その後,試片をふたたび気乾状態にもどして, IR スペクトル (曲線 β) をとる. 乾燥処理前後 (無負荷) の IR スペクトルの 吸収点などについて比較すれば, Table II に示した IR スペクトルとほとんど同じ波長 で,同じ特徴の変化を示す.

以上のように,従来 Drying Set の原因と考えた分子 の結晶域の相互スリップはやはり赤外線吸収スペクトル 観察で1160-1030領域一分子の結晶性バンド領域一の変 化に相当するが,それはまたたんなる熱気乾燥で収縮で も同じ変化を示す[※]. Drying Set としての独特な分子 構造の変化を IR-スペクトル変化 (吸収深さについて の比較を無視して)で示さなかったことは,通常の化学 反応機構による反応基や活性基の変化が生じなかったた

 ^{※1} 柾目面(RL)において,乾燥中半径方向に引張荷重を加える。
※2 板目面(TL)において,乾燥中切線方向に引張荷重を加える。
※3 木口面(RT)において,乾燥中半径方向に引張荷重を加える。

[※] 熱気乾燥による収縮と Drying Set の IE スペクトルが吸収深 さの点でことなるかも知れない.吸収深さによる定量的比較は、 木材のような場合問題があるので取扱わなかつた.

Wave length (cm-1)	Section of Wood	Band in Spectra of Curve	Assignment of band*	Distinguish			
40003600	a) b)	4000	CO, CH, CH ₂ streching. cellulose	Absorbed region of greater intensity			
3800-2900	c)	-		Absorbed region of less intensity			
3200-2900	a)	-					
2250-1750	b)	-					
$\begin{array}{c} 3400 \rightarrow 3350 \\ (\rightarrow \text{ shift}) \end{array}$	a) b)	3350	Hydrogen-bonded OH streching, cellulose, hemicellulose and lignin	Absorbed band of increased intensity and of shift			
2900→2870	a) b)		CH streching, cellose hemicellulose, lignin	Shift of absorbed pond			
2800→2750	c)	2700					
$1515 \rightarrow 1505$	a) b)	1505	streching modes of benzene ring, lignin				
1430→1420	ε) b)	1420	CH ₂ scissor motion cellulose				
1165→1155	a) b)	1160	Asymmetric C-O-C bridge stretching cellulose, hemicellulose	Absorbed band of increased intensity			
1115→1110	a) b)	1110	Glucose ring stretching				
1060-1055	a) b)	1060-1055	Mainly due to C-O streching small,				
1040-1030	a) b)	1030	C-Ostreching, cellulose, hemicellulose				

Table II. Change of IR-spectra band in drying-set treatment of Hinoki-wood

a) Radial section, b) Tangential section, c) Cross section

* Literrature. LIANG, C. Y., BASSETT, K. H., McGINNES, E. A., and MARCHESSAULT, R. H. : Tappi, 43 : 1017, 1960

めと思われる. したがって Drying Set はたんなる熱 気乾燥にともなう木材の構造変化一収縮一と機構上同じ である.

Drying Set を生ずる原因として、1)結晶域の相互 スリップが応力によって促進されるが、これらはフィブ リル中心部の結晶の重ね合せ構造のため生じた¹⁰,

2) フィブリルないし ミクロフィブリル相互間の スリッ プによるためと考えられる.電子顕微鏡を用いて、ミク ロフィブリルの配向性、再配列に関して検討すれば、何 らかの推定がえられるかも知れないが、Set が2~3% 収縮と異なるだけでは電顕によるミクロフィブリル配向 方向測定で明確に示せないものと思われる.

なお,全乾,気乾,および飽湿の3含水率状態のちが いによる IR スペクトルへの差異(データー略)および 熱気乾燥のそれは, IR スペクトル吸収領域の幅および 吸収点の移動を次の波長で生ずることがわかった.

3400, 2900, 1700~1600, 1550~1250, 1160~1030 cm $^{-1}$

4. 摘 要

乾燥中における引張クリープ挙動に関する従来の研究 を継続し、これを熱帯産材に適用してみた.その結果,

(1) マンガシノロの 収縮量はスピナール, マコーレ のそれの半分であるが, 乾燥中のクリープ, クリープコ ンプライアンスはほぼ同じ値を示した.

(2) 熱帯産材3樹種とも、乾燥中の引張クリープ挙

動は日本産広葉樹材シオジと全く同じ傾向を示し,針葉 樹材スギ,ヒノキとは異なることがわかった.

(3) IR スペクトルによれば, Drying Set による分 子構造の変化は熱気乾燥の収縮で生ずるそれと同じ(定 性的に)である. Drying Set による異常変形は, 収縮 のメカニズムの他にミクロフィブリルないしフィブリル の相互スリップにも大きな原因の1つと考えられる.

献

1) ARMSTRONG, L. D. and KINGSTON, R. S. T.: Australian J. Appl. Sci. 13: 257, 1962

文

- ERIKSON, L. and Norén B: Holz als Roh-u. Werkstoff. 23: 201-208, 1965
- 3)藤田晋輔·中戸莞二:木材誌 11:36-40, 1965
- 4)藤田晋輔・高橋 徹:島根大農研報 1:100-103, 1967
- 5)藤田晋輔·高橋 徹:木材誌 15:271-277, 1969
- 6) 飯田生穂・福山萬治郎,浦上弘幸:京都府大農研報, 13,19-25,1969
- 7) SCHNIEWIND, A. P.: Holz als Roh-u. Werkstoff 24: 87-93 1966
- 8)角谷和男·山田正,茅原正毅:木材学会要旨 18: 119,1968
- 9) 高橋 徹·山田 正:木材誌, 12:6-10, 1966
- 10) 谷口 髞・吉見 哲・原田 浩:木材学会要旨, 18:118, 1968

11) 山田 正:木材研究 44:1-11, 1968

12) JEFFRIES, R. · JONES, D. M. · ROBERTS, J. G. SELBY, K. · SIMMENS, S. C. and WARWICKER,

J. O.: Cellulose Chem. Technol., 3: 255-274, 1969

Summary

The behaviours of the shrinkage and creep-deformation under tensile loads during drying have been studied and discussed in these studies. The shrinkage-curves and tensile creep curves during drying for tropical woods used in this experiment are in similar behavior as those of *SIOJI*-wood in the previous report⁽⁴⁾. IR-spectra of drying-set wood (*HINOKI*) are shown in the same phenomena as those of shrinkage.