Remarks on Potential Theoretic Kernels

Takasi KAYANO

Faculty of Literature and Science, Shimane University Matsue, Japan.

and

Shirô OGAWA

Department of Engineering, Kobe University Kobe, Japan (Recieved Oct. 15, 1970)

Introduction.

In the preceding paper [4], we treated the characterization of the family of potential theoretic measures $G^+(\phi)$. Generally considering the characterization of the family $G^+(\phi)$, we defined a concept "T-kernel" and proved that Newtonian kernel Φ_N and the kernel Φ_W associated with the heat equation are T-kernels. The present paper deals with two remarks on potential theoretic kernels which have continuous potentials; the first is concerned with T-kernel and the second is done with the domination principles for Φ_W -potential. In the first section we shall remark that α -kernel and Green kernel are also T-kernels. In the second section we shall introduce a definition of C-domination principle and we shall prove that the kernel Φ_W does not satisfy the ordinary domination principle but it satisfies the C-domination principle.

1. Preliminary.

Let Ω be a locally compact Hausdorff space and $\phi(x, y)$ a measurable function in $\Omega \times \Omega$. A kernel $\check{\phi}(x, y)$ defined by $\check{\phi}(x, y) = \phi(y, x)$ is called the adjoint kernel to $\phi(x, y)$. We denote $\phi^+(x, y) = \sup(\phi(x, y), 0)$ and $\phi^-(x, y) =$ $-inf(\phi(x, y), 0)$. Then $\phi(x, y)$ is equal to $\phi^+(x, y) - \phi^-(x, y)$. The ϕ -potential of a positive Radon measure μ in Ω is defined by $\phi\mu(x) = \int^* \phi(x, y) d\mu(y)$, provided that $\phi^+\mu(x)$ and $\phi^-\mu(x)$ are not infinity at the same time. A kernel $\phi(x, y)$ is called S-kernel if there exists at least such a positive measure λ that the support S_{λ} is compact and the potentials $\phi^{+}\lambda(x)$ and $\phi^{-}\lambda(x)$ are continuous in Ω . In case that $\phi(x, y)$ is S-kernel, we define the following classes of measures,

$$F^{+}(\phi) = \{\lambda : \lambda \geq 0, \ S_{\lambda} \text{ compact, } \phi^{+}\lambda \text{ and } \phi^{-}\lambda \text{ continuous in } \Omega\},\$$

$$G^{+}(\phi) = \{\mu : \mu \geq 0, \ \int^{*} \check{\phi}^{+}\mu d\lambda \text{ and } \int^{*} \check{\phi}^{-}\mu d\lambda < +\infty \text{ for any } \lambda \in F^{+}(\phi)\}.$$

A kernel $\phi(x, y)$ is called *T*-kernel if $\phi(x, y)$ is a non-negative *S*-kernel and for any compact set *K* there exist such a point x_K in \mathcal{Q} , a relatively compact open set U_K containing *K*, and a positive constant M_K depending on x_K and U_K that $\check{\phi}(x, y) \leq M_K \check{\phi}(x_K, y)$ for any *x* of *K* and any *y* of $\mathcal{Q} \setminus U_K$, where $\mathcal{Q} \setminus U_K$ denotes the complementary set of U_K . For a *T*-kernel ϕ and a compact set *K*, we shall denote by E_K the set of all points x_K with the above properties. And in [4], we obtained the following result.

Theorem 1. Suppose that $\phi(x, y)$ is a T-kernel in Ω .

If a non-negative measure μ is such a measure that, for any compact set K is Ω , there exists a point x_{κ} in E_{κ} that $\check{\phi}\mu(x_{\kappa}) < +\infty$, then μ is an element of $G_{+}(\phi)$. If for any compact set K, E_{κ} contains some open set, and there exists a positive measure λ of $F^{+}(\phi)$, of which the support S_{λ} is contained by E_{κ} , then the converse holds.

2. α -kernel and Green kernel are T-kernels

lpha-kernel $\Phi^{\alpha}(x, y)$ in \mathbb{R}^n is defined by $\Phi^{\alpha}(x, y) = \frac{1}{|x-y|^{\eta-\alpha}} \quad (0 < \alpha < n).$

In [4], applying the axiomatic theory of harmonic function, we proved that Φ_N and Φ_W are T-kernels, but for Φ^a we can not apply axiomatic method. Therefore we must consider directly behaviour of the kernel Φ^a in the neighborhood of the Alexandroff point ω of the space \mathbb{R}^n . Now, let $\tilde{\Omega}$ be the compactification of Ω , adding the Alexandroff point ω of Ω .

Lemma. Let $\phi(x, y)$ be a positive S-kernel in Ω . If for any compact set K, there exists such a point $x_{\mathbb{K}}$ in Ω that $\limsup_{y\to\omega} \phi(x, y)/\phi(x_{\mathbb{K}}, y)$ is uniformly bounded with respect to all points x of K, then the kernel $\phi(x, y)$ is a T-kernel.

Proof. According to the assumption, we have the finite supremum $M = \sup_{x \in K} \limsup_{y \to \omega} \check{\phi}(x, y) / \check{\phi}(x_{\kappa}, y)$, and M is a finite positive constant. Therefore,

for any $\varepsilon > 0$ there exists such a neighborhood V_{ω} of the Alexandroff point ω , that the inequality $\check{\phi}(x, y) / \check{\phi}(x_{\kappa}, y) \leq M + \varepsilon$ holds for any point x of the compact set K and for any point y of the neighborhood V_{ω} . Since the complementary set of V_{ω} is compact, there exists a relatively open set U_{κ} which contains the compact set $(\Omega \setminus V_{\omega}) \cup K$ and of which the closure is contained by Ω . Then the complementary set $\Omega \setminus U_{\kappa}$ is contained by the neighborhood V_{ω} . If we substitute M_{κ} for $M + \varepsilon$, we have that $\check{\phi}(x, y) / \check{\phi}(x_{\kappa}y) \leq M_{\kappa}$ for any point y of $\Omega \setminus U_{\kappa}$ and for any point x of K.

Theorem 2. α -kernel Φ^{α} $(0 < \alpha < n)$ satisfies the conditions of the above lemma. Therefore α -kernel $\Phi^{\alpha}(0 < \alpha < n)$ is a T-kernel and E_{κ} is identified with \mathbb{R}^n for any compact set K contained in \mathbb{R}^n .

Proof. It is clear that α -kernel Φ^{α} $(0 < \alpha < n)$ is a positive symmetric S-kernel. The function $\varphi^{\alpha}(r) = 1/r^{n-\alpha}$ $(r > 0, 0 < \alpha < n)$ is monotonously decreasing with respect to r. For any point x_{κ} of \mathbb{R}^n , we set

$$R_k = \sup_{x \in K} |x - x_\kappa|$$
 for given compact set K, and
 $B_r, x_\kappa = \{x : |x - x_\kappa| \leq r \text{ for } r > R_\kappa\}.$

We have the following inequalities

$$0 < |x_{\scriptscriptstyle K} - y| - |x - x_{\scriptscriptstyle K}| \leq |x - y|.$$

for any point x of K and for any point y of $R^n | B_r, x_K$.

According to the monotonous decrease of the function φ^{α} , we have the following inequalities

$$\begin{split} \varphi^{\alpha}(|x-y|) &\leq \varphi^{\alpha}(|x_{K}-y|-|x-x_{K}|) \\ \text{and} \ \frac{\mathcal{O}^{\alpha}(x,y)}{\mathcal{O}^{\alpha}(x_{K},y)} &= \frac{\varphi^{\alpha}(|x-y|)}{\varphi^{\alpha}(|x_{K}-y|)} \leq \frac{\varphi^{\alpha}(|x_{K}-y|-|x-x_{K}|)}{\varphi^{\alpha}(|x_{K}-y|)} \\ &= \left(\frac{|x_{K}-y|-|x-x_{K}|}{|x_{K}-y|}\right)^{\alpha-n} = \left(1 - \left|\frac{x-x_{K}}{y-x_{K}}\right|\right)^{\alpha-n} \end{split}$$

for any point x of K and for any point y of $R^n \setminus B_r$, x_K . From the symmetricity of the α -kernel Φ^{α} , the inequality

$$\limsup_{y \to \omega} \frac{\dot{\varPhi}^{\alpha}(x,y)}{\dot{\varPhi}^{\alpha}(x_{\kappa},y)} \leq 1 \text{ holds for any point } x \text{ of } K.$$

Consequently, by the lemma the kernel \mathcal{Q}^{α} is a T-kernel. Since we can take an arbitrary point of \mathbb{R}^n as x_{κ} , then E_{κ} is identified with \mathbb{R}^n for any compact set K.

In succession, we shall prove that Green kernel is a T-kernel.

Let Ω be a harmonic space satisfying BRELOT-BAUER's axiom, and let function 1 be harmonic in Ω . Now we define Green kernel in domain $D \subset \Omega$ by the function G(x, y) with the following properties;

- (1) G(x, y) is positive in $D \times D$,
- (2) G(x, y) is continuous in $D \times D$ for $x \neq y$,
- (3) $\lim_{x\to\omega} G(x, y) = 0$ for any y of D, where ω is Alexandroff point of D,
- (4) G(x, y) is superharmonic in D with respect to x, and G(x, y) is harmonic in any subdomain V of D with respect to x, when V does not contain y.

Theorem 3. The Green kernel G(x, y) is a T-kernel and E_{κ} is identified with the domain D for any compact subset K of D.

Proof. For any compact subset K of D and for any point x_{κ} of D, there exists such a relatively compact open set U_{κ} , which contains the compact set K and the point x_{κ} , and of which the closure is contained in D.

We set $\alpha = \sup_{x \in K, y \in \partial U_K} \check{G}(x, y)$, and $\beta = \inf_{y \in \partial U_K} \check{G}(x_\kappa, y)$. Since ∂U_κ and K are compact, $\check{G}(x, y)$ and $\check{G}(x_\kappa, y)$ are positive by property (1) and $\check{G}(x, y)$ is continuous for $x \neq y$ in D by property (2), then both values α and β are finite and positive. Therefore $\frac{\alpha}{\beta} \check{G}(x_\kappa, y) - \check{G}(x, y) \ge 0$ is valid for any point x of K and for any point y of the boundary ∂K .

By the property (3), the equality

$$\lim_{y \to \omega} \left(\frac{\alpha}{\beta} \check{G}(x_{\kappa}, y) - \check{G}(x, y) \right) = \lim_{y \to \omega} \frac{\alpha}{\beta} G(y, x_{\kappa}) - \lim_{y \to \omega} G(y, x) = 0$$

holds for any point x of K.

It is well known that if the function 1 is harmonic, we have the following minimum principle.

Minimum Principle. If u is a superharmonic function in the domain D, $D \subset \overline{D} \subset \Omega$, and satisfies $\liminf_{x \in D} u(x) \ge 0$ for any y of ∂D , then u is non-negative in D.

By the property (4) $\check{G}(x, y)$ and $\check{G}(x_{\kappa}, y)$ are harmonic with respect to y in the domain $D \setminus U_{\kappa}$, because $D \setminus U_{\kappa}$ does not contain the points x and x_{κ} . Then $\frac{\alpha}{\beta} \check{G}(x_{\kappa}, y) - \check{G}(x, y)$ is superharmonic with respect to y in $D \setminus U_{\kappa}$. Therefore by the minimum principle we obtain the following inequality $\frac{\alpha}{\beta}\check{G}(x_{\kappa}, y) - \check{G}(x, y) \ge 0$ for any point x of K and for any point y of $D \setminus U_{\kappa}$. Setting $M_{\kappa} = \frac{\alpha}{\beta}$, we have the following inequality

 $\check{G}(x, y) \leq M_{\kappa} \check{G}(x_{\kappa}, y)$ for any point x of K and for any point y of $D \setminus U_{\kappa}$. Since x_{κ} is an arbitrary point of D, then E_{κ} is identified with D for any compact set K.

3. Domination Principles. In this section we use the following definition concerning with domination principles

Definition. We say that S-kernel ϕ satisfies the domination principle (resp. C-domination principle), if for any positive measure λ (resp. of $F^+(\phi)$) with compact support S_{λ} and for any positive measure μ , the inequality $\phi\lambda(x) \leq \phi\mu(x)$ in the whole space follows from the same inequality $\phi\lambda(x) \leq \phi\mu(x)$ on the support S_{λ} .

It is well known that α -kernel Φ^{α} satisfies the domination principle, but we have the following theorem concerning with the kernel Φ_{w} .

Theorem 4. The kernel Φ_w does not satisfy the domination principle, but it satisfies the C-domination principle.

Proof. We use a compact subset $K = \{x = (x_1, \ldots, x_n) : a_i \leq x_i \leq b_i (i = 1, 2, \ldots, n-1), x_n = c \text{ for constants } a_i, b_i, (a_i < b_i) \text{ and } c\}$ and a domain $D = \{x = (x, \ldots, x_n) : x_n < c\}$. Let λ' be a positive measure placed on K and μ a positive measure with compact support in D. Then $\Phi_W \mu(x_0)$ and $\Phi_W \lambda'(x_0)$ are finite for an arbitrary point x_0 of $R^n \setminus \overline{D}$. The potential $\Phi_W \lambda'(x)$ vanishes on K and $\Phi_W \mu(x)$ is positive on K. Consequently, we have the inequality $\Phi_W \lambda'(x) \leq \Phi_W \mu(x)$ on S_{λ} . Both values of $\Phi_W \mu(x_0)$ and $\Phi_W \lambda'(x_0)$ are positive and finite. Then we can take such a positive number M that $M \Phi_W \lambda'(x_0) > \Phi_W \mu(x_0)$. If we set $\lambda = M\lambda'$, we have the following inequalities,

 $\Phi_{W}\lambda(x) \leq \Phi_{W}\mu(x)$ on S_{λ} and $\Phi_{W}\lambda(x_{0}) > \Phi_{W}\mu(x_{0})$.

This shows that Φ_w does not satisfy the domination principle.

Now, we show that Φ_w satisfies the C-domination principle. Let λ be a measure of $F^+(\Phi_w)$, μ a positive measure and suppose that we have the inequality $\Phi_w\lambda(x) \leq \Phi_w\mu(x)$ on S_λ . In order to show that Φ_w satisfies the C-domination principle, it is sufficient to prove that the inequality $\Phi_w\lambda(x) \leq \Phi_w\mu(x)$ holds in $R^n \backslash S_\lambda$. The function $\Phi_w\mu(x) - \Phi_w\lambda(x)$ is lower semi-continuous and we have the following inequalities

$$\liminf_{y \to x} \{ \Phi_{W} \mu(y) - \Phi_{W} \lambda(y) \} \ge \Phi_{W} \mu(x) - \Phi_{W} \lambda(x) \ge 0,$$

where x is a boundary point of S_{λ} and y is a point of $\mathbb{R}^{n} \setminus S_{\lambda}$. On the other hand, by the property of the kernel Φ_{W} , $\Phi_{W}\lambda(x)$ is an element of the class C_{0} , where C_{0} denotes the set of all continuous functions tending to zero at the Alexandroff point ω . Since the function $\Phi_{W}\mu(x) - \Phi_{W}\lambda(x)$ is a superharmonic function in $\mathbb{R}^{n} \setminus S_{\lambda}$, by the minimum principle, we have immediately the desired inequalty.

References

- [1] G. Anger: Funktionalanalytische Betrachtungen bei Differentialgleichungen unter Verwendung von Methoden der Potentialtheorie I, Deutsche Akad. d. Wiss., Berlin, (1965).
- [2] H. Bauer : Harmonische Räume und ihre Potentialtheorie, Springer-Verlag, (1966).
- [3] M. Brelot: Lectures on Potential Theory, Tata Inst. of F. R., Bombay, (1960).
- [4] T. Kayano and S. Ogawa: On a characterization of a Potential Theoretic Measure, Proc. Japan Acad., Vol. 46, No. 9 (1970).