Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 11, pp. 1-7, Dec. 20, 1977

L-Compatible Orthodox Semigroups

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan (Received September 5, 1977)

In the previous papers [6] and [7], the structure of L-compatible orthodox semigroups has been studied. In particular, it has been shown that an orthodox semigroup S is L-compatible if and only if S is an orthodox right regular band of left groups. In this paper, a construction theorem for L-compatible orthodox semigroups is established. Further, the construction of Land H-compatible orthodox semigroups is also discussed.

§1. Introduction

A band B is said to be left regular, right regular, regular, left semiregular or right semiregular if B satisfies the corresponding identity, xyx = xy, xyx = yx, xyxzx=xyzx, xyzxyxz=xyxz or zxyxzyx=zxyx. Let I be a band. A semigroup S is called a band I of semigroups S_i if it satisfies the following conditions:

(1.1)(1) $S = \sum \{S_i : i \in I\}$ (disjoint sum), and

(2) $S_i S_k \subset S_{ik}$ for all $j, k \in I$.

In this case, we shall denote it by $S \equiv \sum \{S_i : i \in I\}$. If S and each S_i are orthodox semigroups, then S is especially called an orthodox band I of orthodox semigroups S_i . In Schein [2], the construction of bands of monoids has been studied and in particular a nice construction was given for [left, right] regular bands of monoids. A semigroup S is said to be L[R, H]-compatible if the Green's L[R, H]-relation on S is a congruence. In the previous papers [6], [7] of the author, the structure of L[R, H]compatible orthodox semigroups has been studied and the following results were established:

regular band of left groups.¹⁾

II. An orthodox semigroup S is L- and H-compatible if and only if S is both an orthodox right regular band of left groups and a band of groups.

In the case II, the set E(S) of idempotents of S is a right regular band of left zero semigroups (see [4]). Therefore, E(S) is a right semiregular band. Hence, the result

I. An orthodox semigroup S is L-compatible if and only if S is an orthodox right

¹⁾ A semigroup S is called a *left group* if S is isomorphic to the direct product of a left zero semigroup and a group.

Miyuki Yamada

II above can be rewritten as follows:

III. An orthodox semigroup S is L- and H-compatible if and only if S is an orthodox right semiregular band of groups.

The construction of *L*-compatible orthodox (or more generally, regular) semigroups has been investigated by Warne [3].²⁾ Let *I* denote a lower associative semilattice *Y* of left groups, and *J* an associative semilattice *Y* of right zero semigroups. Warne [3] proved that a semigroup *S* is a band of maximal left groups if and only if *S* is a Schreier product of *I* and *J* for some *I* and *J*.

In this short note, we shall give a construction for L-compatible orthodox semigroups and that for L- and H-compatible orthodox semigroups in the direction of the method given by Schein [2].

§2. L-compatible orthodox semigroups

Let S be an L-compatible orthodox semigroup, and E(S) the right semiregular band of idempotents of S. As was shown in [6], S is of course a right regular band Λ of left groups $S_{\lambda}: S \equiv \sum \{S_{\lambda}: \lambda \in \Lambda\}$. Let G_{λ} be one of the maximal subgroups of S_{λ} for each $\lambda \in \Lambda$. Then, every $x \in S_{\lambda}$ can be written in the form x = eg, where $e \in E(S_{\lambda})$ (the set of idempotents of S_{λ}) and $g \in G_{\lambda}$. For any $x, y \in S_{\lambda}$, it follows that $x = eg, y = ft, e, f \in E(S_{\lambda})$ and $g, t \in G_{\lambda}$ imply xy = efgt = egt. Hence, the mapping $\varphi: S_{\lambda} \rightarrow E(S_{\lambda}) \times G_{\lambda}$ (the direct product of $E(S_{\lambda}), G_{\lambda}$) defined by $x\varphi = (e, g)$, if $e \in E(S_{\lambda})$, $g \in G_{\lambda}$ and x = eg, gives an isomorphism of S_{λ} onto $E(S_{\lambda}) \times G_{\lambda}$.

Hereafter, we shall simply denote $E(S_{\lambda})$ by E_{λ} . Now, define a relation ρ on S as follows:

(2.1) $x \rho y$ if and only if $x, y \in S_{\lambda}$ for some $\lambda \in A$, and x = eg and y = fg for some $e, f \in E_{\lambda}$ and $g \in G_{\lambda}$.

It is easily seen that this condition (2.1) is equivalent to the following:

(2.2) $x \rho y$ if and only if $x, y \in S_{\lambda}$ for some $\lambda \in A$, and ex = ey for some $e \in E_{\lambda}$.

LEMMA 1. The relation ρ is a congruence on S, and S/ρ is an orthodox right regular band Λ of the groups $S_{\lambda}/\rho: S/\rho \equiv \sum \{S_{\lambda}/\rho: \lambda \in \Lambda\}$.

PROOF. It is obvious that ρ is reflexive, symmetric and transitive. Now, let $c \in S_{\tau}$ and $x\rho y$. Then, there exists $\lambda \in A$ such that $x, y \in S_{\lambda}$. Since $x\rho y$, there exists also $e \in E_{\lambda}$ such that ex = ey. Hence, $xy^{-1} \in E_{\lambda}$ (where y^{-1} denotes an inverse of y in the maximal subgroup containing y). Now, $cxy^{-1}c^{-1}=f \in S_{\lambda\tau}$ (since $cxy^{-1}c^{-1} \in S_{\tau\lambda\tau} = S_{\lambda\tau}$), and f is an idempotent. Further, we have $cxy^{-1}c^{-1}cy=fcy$, $cc^{-1}cxy^{-1}$. $cc^{-1}yy^{-1}y=fcy$, $cxy^{-1}y=fcy$, $cxx^{-1}xy^{-1}y=fcy$, cx=fcy, and consequently fcx

²⁾ The general theory of orthodox unions of groups has been studied by many papers (for the outlines of their papers, see Clifford [1]).

=fcy. It is easy to see that $cx, cy \in S_{\tau\lambda}$ and both $S_{\tau\lambda}$ and $S_{\lambda\tau}$ are contained in a rectangular group component (kernel) of the greatest semilattice decomposition of S. Hence, $fhe_1cx = fhe_2cy$, where e_1, e_2 are the identities of the maximal groups containing cx and cy respectively, and h is an element of $E_{\tau\lambda}$. Since $fh \in S_{\lambda\tau\lambda}$ and Λ is a right regular band, $fh \in S_{\tau\lambda}$. Hence, fhcx = fhcy and $fh \in S_{\tau\lambda}$. This implies that $cx\rho cy$. Next, we shall show that $xc\rho yc$. First we have ex = ey, exc = eyc, $ee_{\lambda\tau}xc = ee_{\lambda\tau}'yc$ (where $e_{\lambda\tau}$ and $e_{\lambda\tau}'a$ are the identities of maximal subgroups containing xc and yc respectively), $e_{\lambda\tau}ee_{\lambda\tau}xc = e_{\lambda\tau}ee_{\lambda\tau}'yc$, and consequently $e_{\lambda\tau}xc = e_{\lambda\tau}yc$. Thus, $xc\rho yc$. It is easily proved that each S_{λ}/ρ is a group and S/ρ is an orthodox right regular band Λ of the groups S_{λ}/ρ .

In $S/\rho \equiv \sum \{S_{\lambda}/\rho : \lambda \in \Lambda\}$, define $\varphi_{\lambda} : S_{\lambda}/\rho \to G_{\lambda}$ by $\overline{eg}\varphi_{\lambda} = g$ (where \overline{eg} is the ρ -class containing eg, and $e \in E_{\lambda}, g \in G_{\lambda}$). Then, φ_{λ} is an isomorphism. Therefore, if \overline{eg} is identified with g and if S_{λ}/ρ is identified with G_{λ} then S/ρ can be considered as an orthodox right regular band Λ of the groups $G_{\lambda} : S/\rho \equiv \sum \{G_{\lambda} : \lambda \in \Lambda\}$. We shall denote the multiplication in S/ρ by *.

Now, for $eg \in S_{\lambda}$ $(e \in E_{\lambda}, g \in G_{\lambda})$ and $ft \in S_{\tau}$ $(f \in E_{\tau}, t \in G_{\tau})$,

 $egft = egfg^{-1}gft$ (g^{-1} denotes an inverse of g in G_{λ}).

Define $\tilde{g}: E \to E$ by $f^{\tilde{g}} (=f\tilde{g})=gfg^{-1}$ (where E=E(S), that is, the band of all idempotents of S).

For $x \in S_{\lambda}$ and $y \in S_{\tau}$, where x = eg, y = ft, $e \in E_{\lambda}$, $g \in G_{\lambda}$, $f \in E_{\tau}$ and $t \in G_{\tau}$,

(2.3) $xy = egft = ef^{\tilde{g}}gft = ef^{\tilde{g}}u_{\lambda\tau}g*t$ (where $u_{\lambda\tau}$ is some element of $E_{\lambda\tau}) = ef^{\tilde{g}}u_{\lambda\tau}1_{\lambda\tau}g*t$ (where 1_{λ} is a representative of E_{λ} for each $\lambda \in \Lambda$) = $ef^{\tilde{g}}1_{\lambda\tau}g*t$ (since $f^{\tilde{g}} \in E_{\tau\lambda}$ and the elements $f^{\tilde{g}}$, $1_{\lambda\tau}$ and $u_{\lambda\tau}$ are contained in the same rectangular band component (kernel) of the greatest semilattice decomposition of E).

Therefore, for $z \in S_{\delta}$ (where z = hv, $h \in E_{\delta}$ and $v \in G_{\delta}$)

 $(xy)z = x(yz) \text{ implies that } e(fh^{\tilde{i}}1_{\tau\delta})^{\tilde{g}}1_{\lambda\tau\delta}x*y*z$ $= ef^{\tilde{g}}1_{\tau\delta}h^{\widetilde{g*t}}1_{\tau\delta}x*y*z.$

Hence, we have the following:

(2.4) (1) For any g ∈ G_λ (λ ∈ Λ), ğ maps E_τ into E_{τλ} (ğ is necessarily a homomorphism on E_τ), and the restriction of ğ to E_λ (that is, ğ|E_λ) maps E_λ to a single element of E_λ,
(2) e(fhⁱ1_{τδ})^ğ1_{λτδ} = ef^ğ1_{λτ}h^{g*t}1_{λτδ} for e∈E_λ, f∈E_τ, h∈E_δ, g∈G_λ and t∈ G_τ.

If we denote x by (e, g) if x = eg, $e \in E_{\lambda}$ and $g \in G_{\lambda}$, then $S = \{(e, g) : e \in E_{\lambda}, g \in G_{\lambda}, d \in G_{\lambda}\}$

Miyuki Yamada

 $\lambda \in \Lambda$ and the multiplication in S is given as follows:

(2.5) For x = (e, g), y = (f, t) (where $x \in S_{\lambda}$, $y \in S_{\tau}$),

$$(e, g)(f, t) = (ef^{\tilde{g}}1_{\lambda\tau}, g*t).$$

Conversely, let Λ be a right regular band. Suppose that $G \equiv \sum \{G_{\lambda} : \lambda \in \Lambda\}$ is an orthodox right regular band Λ of groups G_{λ} and $E \equiv \sum \{E_{\lambda} : \lambda \in \Lambda\}$ is a right regular band Λ of left zero semigroups E_{λ} . Let 1_{λ} be a representative of E_{λ} for each $\lambda \in \Lambda$. For each $g \in G$, let \tilde{g} be a mapping of E into E such that the system $\{\tilde{g} : g \in G\}$ of all \tilde{g} satisfies the condition (2.4) above. Then, $S = \sum \{E_{\lambda} \times G_{\lambda} : \lambda \in \Lambda\}$ becomes an orthodox right regular band Λ of the left groups $E_{\lambda} \times G_{\lambda}$ under the multiplication defined as follows:

For $(e, g) \in E_{\lambda} \times G_{\lambda}$ and $(f, t) \in E_{\tau} \times G_{\tau}$, $(e, g)(f, t) = (ef^{\tilde{g}} 1_{\lambda \tau}, g * t)$,

where * is the multiplication in G.

Summarizing the results above, we obtain the following theorem:

THEOREM 2. Let Λ be a right regular band. Let $G \equiv \sum \{G_{\lambda} : \lambda \in \Lambda\}$ be an orthodox right regular band Λ of groups G_{λ} , and $E \equiv \sum \{E_{\lambda} : \lambda \in \Lambda\}$ a right regular band Λ of left zero semigroups E_{λ} . Let 1_{λ} be a representative of E_{λ} for each $\lambda \in \Lambda$. For each $g \in G$, let \tilde{g} be a mapping of E into E such that the system $\{\tilde{g} : g \in G\}$ satisfies (2.4). Then, $S = \sum \{E_{\lambda} \times G_{\lambda} : \lambda \in \Lambda\}$ becomes an orthodox right regular band Λ of the left groups $E_{\lambda} \times G_{\lambda}$ under the multiplication defined as follows:

(2.6) For $(e, g) \in E_{\alpha} \times G_{\alpha}$ and $(f, t) \in E_{\beta} \times G_{\beta}$, $(e, g)(f, t) = (ef^{\tilde{g}}1_{\alpha\beta}, g*t)$,

where * denotes the multiplication in G. Accordingly, S is an L-compatible orthodox semigroup. Conversely, every L-compatible orthodox semigroup can be constructed in this way.

REMARK 1. A construction for orthodox right regular bands of groups can be obtained as a special case of Theorem 3 of Schein [2].

2. It has been proved by [7] that an orthodox semigroup S is both L- and R-compatible if and only if S is an orthodox regular band of groups. On the other hand, a construction for such semigroups can be obtained as a special case of Theorem 4 of Schein [2].

§3. L- and H-compatible orthodox semigroups

It has been shown by [6] that an orthodox semigroup S is both L- and H-compatible if and only if S is a band of groups and an orthodox right regular band of left groups. Accordingly, S is L- and H-compatible if and only if S is an orthodox right semiregular band of groups.

In this section, we shall consider the construction of L- and H-compatible orthodox semigroups.

Let S be an L- and H-compatible orthodox semigroup. Then, there exist a right semiregular band Γ which is a right regular band Λ of left zero semigroups Γ_{λ} (that is, $\Gamma \equiv \sum \{\Gamma_{\lambda} : \lambda \in \Lambda\}$) and a left group S_{λ} for each $\lambda \in \Lambda$ such that

- (1) S is an orthodox right regular band Λ of the left groups $S_{\lambda}: S \equiv \sum \{S_{\lambda}: \lambda \in \Lambda\}$,
- (2) S_λ is a left zero semigroup Γ_λ of groups G_{λi}: S_λ ≡ Σ{G_{λi}: λ_i ∈ Γ_λ} (hereafter, elements of Γ_λ are denoted by λ_i, λ_j, etc.), and
- (3) for any $\lambda_i \in \Gamma_{\lambda}$ and $\tau_j \in \Gamma_{\tau}$, $G_{\lambda_i} G_{\tau_j} \subset G_{\lambda_i \tau_j}$ holds.

Denote the identity of G_{λ_i} by e_{λ_i} .

Now, we introduce a quasiorder \leq in Λ as follows (see [2]): For α , $\beta \in \Lambda$, $\beta \leq \alpha$ if and only if $\beta \alpha \beta = \beta$. Since Λ is a right regular band, in this case $\alpha \beta = \beta$ holds.

For any $\alpha_i \in \Gamma_{\alpha}$, $\beta_j \in \Gamma_{\beta}$ such that $\alpha \ge \beta$, define a mapping f_{α_i,β_j} : $G_{\alpha_i} \to G_{\beta_j}$ by

$$x f_{\alpha_i,\beta_j} = e_{\beta_j} x e_{\beta_j}.$$

For x, $y \in G_{\alpha_i}$, we have $e_{\beta_j} x e_{\beta_j} y e_{\beta_j} = e_{\beta_j} x e_{\beta_j} e_{\alpha_i} y e_{\beta_j} = e_{\beta_j} x y e_{\beta_j}$ (since $e_{\beta_j} e_{\alpha_i}$ is the identity of $G_{\beta_j \alpha_i} (\ni e_{\beta_j} x)$). Hence, f_{α_i,β_j} is a homomorphism. Now, let us consider the system $\{f_{\alpha_i,\beta_j}: \alpha, \beta \in \Lambda, \alpha \geq \beta, \alpha_i \in \Gamma_{\alpha}, \beta_j \in \Gamma_{\beta}\}$. For $\alpha_i \in \Gamma_{\alpha}, \beta_j \in \Gamma_{\beta}$ and $\gamma_k \in \Gamma_{\gamma}$ such that $\alpha \geq \beta$ $\geq \gamma$, we can prove by simple calculation that $x f_{\alpha_i,\beta_j} f_{\beta_j,\gamma_k} = x f_{\alpha_i,\gamma_k}$ for all $x \in G_{\alpha_i}$. Further, $x f_{\alpha_i,\alpha_j} = e_{\alpha_j} x e_{\alpha_j} = e_{\alpha_j} x$ for $\alpha_i, \alpha_j \in \Gamma_{\alpha}$ and $x \in G_{\alpha_i}$. Therefore, f_{α_i,α_j} is the left multiplication by e_{α_i} .

From the results above, this system satisfies the following:

(3.1) (1) For any α∈Λ and for any α_i, α_j∈Γ_α, f_{αi,αj}=the left multiplication by e_{αj},
(2) for α_i∈Γ_α, β_j∈Γ_β and γ_k∈Γ_γ such that α≥β≥γ,

$$f_{\alpha_i,\beta_j}f_{\beta_j,\gamma_k}=f_{\alpha_i,\gamma_k}.$$

Now, it is easy to see that the multiplication in S is given as follows by using this system:

(3.2) For $x \in G_{\alpha_i}$ and $y \in G_{\beta_i}$,

$$\begin{aligned} xy &= xe_{\alpha_i}e_{\beta_j}y = xe_{\alpha_i\beta_j}y = (e_{\alpha_i\beta_j}xe_{\alpha_i\beta_j})(e_{\alpha_i\beta_j}ye_{\alpha_i\beta_j}) \\ &= (xf_{\alpha_i,\alpha_i\beta_j})(yf_{\beta_j,\alpha_i\beta_j}). \end{aligned}$$

Conversely, we have the following:

LEMMA 3. Let Γ be a right semiregular band which is a right regular band

Miyuki Yamada

A of left zero semigroups $\Gamma_{\lambda}: \Gamma \equiv \sum \{\Gamma_{\lambda}: \lambda \in \Lambda\}$. For each $\lambda \in \Lambda$, let S_{λ} be a left zero semigroup Γ_{λ} of groups $G_{\lambda_{i}}$ (hence, S_{λ} is a left group): $S_{\lambda} \equiv \sum \{G_{\lambda_{i}}: \lambda_{i} \in \Gamma_{\lambda}\}$. Let $e_{\lambda_{i}}$ be the identity of $G_{\lambda_{i}}$ for $\lambda_{i} \in \Gamma_{\lambda}, \lambda \in \Lambda$. Now, let $F = \{f_{\alpha_{i},\beta_{j}}: \alpha, \beta \in \Lambda, \alpha \geq \beta, \alpha_{i} \in \Gamma_{\alpha}, \beta_{j} \in \Gamma_{\beta}\}$ be a system of homomorphisms $f_{\alpha_{i},\beta_{j}}: G_{\alpha_{i}} \rightarrow G_{\beta_{j}}$ such that it satisfies (3.1) (such a system is called a direct system on $\{G_{\lambda_{i}}: \Gamma_{\lambda}, \Gamma(\Lambda)\}$). Then, $S = \sum \{S_{\lambda}: \lambda \in \Lambda\}$ becomes an orthodox right regular band Λ of the left groups S_{λ} and is a right semiregular band Γ of the groups $G_{\lambda_{i}}$ under the multiplication * defined as follows:

(3.3) For $x \in G_{\alpha_i}$ and $y \in G_{\beta_i}$,

$$x * y = (x f_{\alpha_i, \alpha_i \beta_j}) (y f_{\beta_j, \alpha_i \beta_j}).$$

That is, S(*) is an L- and H-compatible orthodox semigroup.

PROOF. First we shall show that S(*) is a semigroup. For $x \in G_{\alpha_i}$, $y \in G_{\beta_j}$ and $z \in G_{\gamma_k}$.

$$\begin{aligned} (x*y)*z &= ((xf_{\alpha_i,\beta_j\gamma_k}yf_{\beta_j,\alpha_i\beta_j})f_{\alpha_i\beta_j,\alpha_i\beta_j\gamma_k})(zf_{\gamma_k,\alpha_i\beta_j\gamma_k}) \\ &= (xf_{\alpha_i,\alpha_i\beta_j\gamma_k})(yf_{\beta_j,\alpha_i\beta_j\gamma_k})(zf_{\gamma_k,\alpha_i\beta_j\gamma_k}). \end{aligned}$$

Similarly, we have

$$x*(y*z) = (xf_{\alpha_i,\alpha_i\beta_j\gamma_k})(yf_{\beta_j,\alpha_i\beta_j\gamma_k})(zf_{\gamma_k,\alpha_i\beta_j\gamma_k}).$$

Hence, S(*) is a semigroup. Next, for $x \in G_{\alpha_i}$ and $y \in G_{\alpha_i}$ it follows that

$$x*y = (xf_{\alpha_i,\alpha_i\alpha_j})(yf_{\alpha_j,\alpha_i\alpha_j}) = (xf_{\alpha_i,\alpha_i})(yf_{\alpha_j,\alpha_i}) = e_{\alpha_i}xe_{\alpha_i}y$$
$$= xy \text{ (in } S_{\alpha}).$$

Therefore, S_{α} is embedded in S(*). Further, for any $x \in G_{\alpha_i}$ and $y \in G_{\beta_i}$

$$x * y = (x f_{\alpha_i, \alpha_i \beta_j}) (y f_{\beta_j, \alpha_i \beta_j}) \subset G_{\alpha_i \beta_j} \subset S_{\alpha \beta}.$$

Thus, S(*) is a right regular band Λ of the left groups S_{λ} and is a right semiregular band Γ of the groups G_{α_i} . Especially, if we put $e_{\alpha_i} = x$ and $e_{\beta_j} = y$ in the equality above then we have $e_{\alpha_i} * e_{\beta_j} = e_{\alpha_i\beta_j} e_{\alpha_i\beta_j} = e_{\alpha_i\beta_j}$. Hence, the set E(S(*)) of idempotents of S(*)is a band which is isomorphic to Γ . Therefore, S(*) is an orthodox semigroup.

From the results above, we have the following theorem:

THEOREM 4. Let Γ be a right semiregular band which is a right regular band Λ of left zero semigroups $\Gamma_{\lambda}: \Gamma \equiv \sum \{\Gamma_{\lambda}: \lambda \in \Lambda\}$. For each $\lambda \in \Lambda$, let S_{λ} be a left zero semigroup Γ_{λ} of groups $G_{\lambda_i}: S_{\lambda} \equiv \sum \{G_{\lambda_i}: \lambda_i \in \Gamma_{\lambda}\}$ (hence, S_{λ} is a left group). Let e_{λ_i} be the identity of G_{λ_i} for $\lambda_i \in \Gamma_{\lambda}$, $\lambda \in \Lambda$. Let $\{f_{\alpha_i,\beta_j}: \alpha, \beta \in \Lambda, \alpha \geq \beta, \alpha_i \in \Gamma_{\alpha}, \beta_j \in \Gamma_{\beta}\}$ be a direct system on $\{G_{\lambda_i}: \Gamma_{\lambda}, \Gamma(\Lambda)\}$. Then, $S = \sum \{S_{\lambda}: \lambda \in \Lambda\}$ is an orthodox right regular band Λ of the left groups S_{λ} and is a right semiregular band Γ of the groups G_{λ_i} under the multiplication * defined by (3.3). That is, S(*) is an L- and H-compatible orthodox semigroup. Conversely, every L- and H-compatible orthodox semigroup can be constructed in this way.

REMARK. The following result was established by [5]: Let Γ be a right semiregular band, and $\Gamma \sim \sum \{\Gamma_{\delta} : \delta \in \Delta\}$ the structure decomposition³⁾ of Γ . Let G be a semilattice Δ of groups $G_{\delta} : G \equiv \sum \{G_{\delta} : \delta \in \Delta\}$. Then, the spined product $\Gamma \bowtie G(\Delta)$ of Γ and G is an orthodox right semiregular band of groups, and accordingly $\Gamma \bowtie G(\Delta)$ is an *L*- and *H*-compatible orthodox semigroup. Further, every *L*- and *H*-compatible orthodox semigroup can be constructed in this way.

Theorem 4 above gives another construction for L- and H-compatible orthodox semigroups in the direction of the method given by Schein [2].

References

- Clifford, A. H.: The structure of orthodox unions of groups, Semigroup Forum 3 (1972), 283-337.
- [2] Schein, B. M.: Bands of unipotent monoids, Semigroup Forum 6 (1973), 75-79.
- [3] Warne, R. J.: On the structure of semigroups which are unions of groups, Semigroup Forum 5 (1973), 323-330.
- [4] Yamada, M.: The structure of separative bands, Dissertation, University of Utah, 1962.

- [7] ———: H-compatible orthodox semigroups, to appear.

³⁾ Any band B can be uniquely expressed as a semilattice Δ of rectangular bands $B_{\delta}: B \equiv \sum \{B_{\delta}: \delta \in \Delta\}$. In this case, this expression is called *the structure decomposition of B*, and denoted by $B \sim \sum \{B_{\delta}: \delta \in \Delta\}$.