L-Compatible Orthodox Semigroups

Miyuki Yamada
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 5, 1977)

Abstract

In the previous papers [6] and [7], the structure of L-compatible orthodox semigroups has been studied. In particular, it has been shown that an orthodox semigroup S is L -compatible if and only if S is an orthodox right regular band of left groups. In this paper, a construction theorem for \mathbb{L}-compatible orthodox semigroups is established. Further, the construction of \mathbb{L} and \mathbb{H}-compatible orthodox semigroups is also discussed.

§1. Introduction

A band B is said to be left regular, right regular, regular, left semiregular or right semiregular if B satisfies the corresponding identity, $x y x=x y, x y x=y x, x y x z x$ $=x y z x, x y z x y x z=x y x z$ or $z x y x z y x=z x y x$. Let I be a band. A semigroup S is called a band I of semigroups S_{i} if it satisfies the following conditions:

> (1) $S=\sum\left\{S_{i}: i \in I\right\}$ (disjoint sum), and
> (2) $S_{j} S_{k} \subset S_{j k} \quad$ for all $j, k \in I$.

In this case, we shall denote it by $S \equiv \sum\left\{S_{i}: i \in I\right\}$. If S and each S_{i} are orthodox semigroups, then S is especially called an orthodox band I of orthodox semigroups S_{i}. In Schein [2], the construction of bands of monoids has been studied and in particular a nice construction was given for [left, right] regular bands of monoids. A semigroup S is said to be $L[R, H]$-compatible if the Green's $L[R, H]$-relation on S is a congruence. In the previous papers [6], [7] of the author, the structure of $L[R, H]$ compatible orthodox semigroups has been studied and the following results were established:
I. An orthodox semigroup S is L-compatible if and only if S is an orthodox right regular band of left groups. ${ }^{1)}$
II. An orthodox semigroup S is L - and H-compatible if and only if S is both an orthodox right regular band of left groups and a band of groups.

In the case II, the set $E(S)$ of idempotents of S is a right regular band of left zero semigroups (see [4]). Therefore, $E(S)$ is a right semiregular band. Hence, the result

1) A semigroup S is called a left group if S is isomorphic to the direct product of a left zero semigroup and a group.

II above can be rewritten as follows:
III. An orthodox semigroup S is L - and H-compatible if and only if S is an orthodox right semiregular band of groups.

The construction of L-compatible orthodox (or more generally, regular) semigroups has been investigated by Warne [3]. ${ }^{2}$) Let I denote a lower associative semilattice Y of left groups, and J an associative semilattice Y of right zero semigroups. Warne [3] proved that a semigroup S is a band of maximal left groups if and only if S is a Schreier product of I and J for some I and J.

In this short note, we shall give a construction for L-compatible orthodox semigroups and that for L - and H-compatible orthodox semigroups in the direction of the method given by Schein [2].

§2. L-compatible orthodox semigroups

Let S be an L-compatible orthodox semigroup, and $E(S)$ the right semiregular band of idempotents of S. As was shown in [6], S is of course a right regular band Λ of left groups $S_{\lambda}: S \equiv \sum\left\{S_{\lambda}: \lambda \in \Lambda\right\}$. Let G_{λ} be one of the maximal subgroups of S_{λ} for each $\lambda \in \Lambda$. Then, every $x \in S_{\lambda}$ can be written in the form $x=e g$, where $e \in$ $E\left(S_{\lambda}\right)$ (the set of idempotents of S_{λ}) and $g \in G_{\lambda}$. For any $x, y \in S_{\lambda}$, it follows that $x=e g, y=f t, e, f \in E\left(S_{\lambda}\right)$ and $g, t \in G_{\lambda}$ imply $x y=e f g t=e g t$. Hence, the mapping $\varphi: S_{\lambda} \rightarrow E\left(S_{\lambda}\right) \times G_{\lambda}$ (the direct product of $\left.E\left(S_{\lambda}\right), G_{\lambda}\right)$ defined by $x \varphi=(e, g)$, if $e \in E\left(S_{\lambda}\right)$, $g \in G_{\lambda}$ and $x=e g$, gives an isomorphism of S_{λ} onto $E\left(S_{\lambda}\right) \times G_{\lambda}$.

Hereafter, we shall simply denote $E\left(S_{\lambda}\right)$ by E_{λ}. Now, define a relation ρ on S as follows:
(2.1) $x \rho y$ if and only if $x, y \in S_{\lambda}$ for some $\lambda \in \Lambda$, and $x=e g$ and $y=f g$ for some $e, f \in E_{\lambda}$ and $g \in G_{\lambda}$.
It is easily seen that this condition (2.1) is equivalent to the following: $x \rho y$ if and only if $x, y \in S_{\lambda}$ for some $\lambda \in \Lambda$, and $e x=e y$ for some $e \in E_{\lambda}$.
Lemma 1. The relation ρ is a congruence on S, and S / ρ is an orthodox right regular band Λ of the groups $S_{\lambda} / \rho: S / \rho \equiv \Sigma\left\{S_{\lambda} / \rho: \lambda \in \Lambda\right\}$.

Proof. It is obvious that ρ is reflexive, symmetric and transitive. Now, let $c \in S_{\tau}$ and x ρy. Then, there exists $\lambda \in \Lambda$ such that $x, y \in S_{\lambda}$. Since $x \rho y$, there exists also $e \in E_{\lambda}$ such that $e x=e y$. Hence, $x y^{-1} \in E_{\lambda}$ (where y^{-1} denotes an inverse of y in the maximal subgroup containing y). Now, $c x y^{-1} c^{-1}=f \in S_{\lambda \tau}$ (since $c x y^{-1} c^{-1}$ $\in S_{\tau \lambda \tau}=S_{\lambda \tau}$), and f is an idempotent. Further, we have $c x y^{-1} c^{-1} c y=f c y, c c^{-1} c x y^{-1}$. $c c^{-1} y y^{-1} y=f c y, c x y^{-1} y=f c y, c x x^{-1} x y^{-1} y=f c y, c x=f c y$, and consequently $f c x$
2) The general theory of orthodox unions of groups has been studied by many papers (for the outlines of their papers, see Clifford [1]).
$=f c y$. It is easy to see that $c x, c y \in S_{\tau \lambda}$ and both $S_{\tau \lambda}$ and $S_{\lambda \tau}$ are contained in a rectangular group component (kernel) of the greatest semilattice decomposition of S. Hence, $f h e_{1} c x=f h e_{2} c y$, where e_{1}, e_{2} are the identities of the maximal groups containing $c x$ and $c y$ respectively, and h is an element of $E_{\tau \lambda}$. Since $f h \in S_{\lambda \tau \lambda}$ and Λ is a right regular band, $f h \in S_{\tau \lambda}$. Hence, $f h c x=f h c y$ and $f h \in S_{\tau \lambda}$. This implies that cxpcy. Next, we shall show that $x c \rho y c$. First we have ex=ey, exc $=e y c, e e_{\lambda_{\tau}} x c$ $=e e_{\lambda \tau}^{\prime} y c$ (where $e_{\lambda \tau}$ and $e_{\lambda \tau}^{\prime}$ are the identities of maximal subgroups containing $x c$ and $y c$ respectively), $e_{\lambda \tau} e e_{\lambda \tau} x c=e_{\lambda_{\tau}} e e_{\lambda \tau}^{\prime} y c$, and consequently $e_{\lambda_{\tau}} x c=e_{\lambda_{\tau}} y c$. Thus, $x c \rho y c$. It is easily proved that each S_{λ} / ρ is a group and S / ρ is an orthodox right regular band Λ of the groups S_{λ} / ρ.

In $S / \rho \equiv \Sigma\left\{S_{\lambda} / \rho: \lambda \in \Lambda\right\}$, define $\varphi_{\lambda}: S_{\lambda} / \rho \rightarrow G_{\lambda}$ by $\overline{e g} \varphi_{\lambda}=g$ (where $\overline{e g}$ is the ρ-class containing eg, and $e \in E_{\lambda}, g \in G_{\lambda}$). Then, φ_{λ} is an isomorphism. Therefore, if $\overline{e g}$ is identified with g and if S_{λ} / ρ is identified with G_{λ} then S / ρ can be considered as an orthodox right regular band Λ of the groups $G_{\lambda}: S / \rho \equiv \sum\left\{G_{\lambda}: \lambda \in \Lambda\right\}$. We shall denote the multiplication in S / ρ by $*$.

Now, for $e g \in S_{\lambda}\left(e \in E_{\lambda}, g \in G_{\lambda}\right)$ and $f t \in S_{\tau}\left(f \in E_{\tau}, t \in G_{\tau}\right)$,

$$
e g f t=e g f g^{-1} g f t \quad\left(g^{-1} \text { denotes an inverse of } g \text { in } G_{\lambda}\right) .
$$

Define $\tilde{g}: E \rightarrow E$ by $f^{\tilde{g}}(=f \tilde{g})=g f g^{-1}$ (where $E=E(S)$, that is, the band of all idempotents of S).

For $x \in S_{\lambda}$ and $y \in S_{\tau}$, where $x=e g, y=f t, e \in E_{\lambda}, g \in G_{\lambda}, f \in E_{\tau}$ and $t \in G_{\tau}$,
(2.3) $x y=e g f t=e f^{\tilde{g}} g f t=e f^{\tilde{g}} u_{\lambda \tau} g * t$ (where $u_{\lambda \tau}$ is some element of $\left.E_{\lambda \tau}\right)=e f^{\tilde{g}} u_{\lambda \tau} 1_{\lambda \tau} g * t$ (where 1_{λ} is a representative of E_{λ} for each $\lambda \in \Lambda$) $=e f^{\tilde{g}} 1_{\lambda \tau} g * t$ (since $f^{\tilde{g}} \in E_{\tau \lambda}$ and the elements $f^{\tilde{g}}, 1_{\lambda \tau}$ and $u_{\lambda \tau}$ are contained in the same rectangular band component (kernel) of the greatest semilattice decomposition of E).

Therefore, for $z \in S_{\delta}$ (where $z=h v, h \in E_{\delta}$ and $v \in G_{\delta}$)

$$
\begin{aligned}
(x y) z & =x(y z) \text { implies that } e\left(f h^{\tilde{\tau}} 1_{\tau \delta}\right)^{\tilde{g}} 1_{\lambda \tau \delta} x * y * z \\
& =e f^{\tilde{g}} 1_{\lambda \tau} \widetilde{g}^{\widetilde{g} t} 1_{\lambda \tau \delta} x * y * z .
\end{aligned}
$$

Hence, we have the following:
(2.4) (1) For any $g \in G_{\lambda}(\lambda \in \Lambda), \tilde{g}$ maps E_{τ} into $E_{\tau \lambda}(\tilde{g}$ is necessarily a homomorphism on E_{τ}), and the restriction of \tilde{g} to E_{λ} (that is, $\tilde{g} \mid E_{\lambda}$) maps E_{λ} to a single element of E_{λ},
 G_{τ}.

If we denote x by (e, g) if $x=e g, e \in E_{\lambda}$ and $g \in G_{\lambda}$, then $S=\left\{(e, g): e \in E_{\lambda}, g \in G_{\lambda}\right.$,
$\lambda \in \Lambda\}$ and the multiplication in S is given as follows:
For $x=(e, g), y=(f, t)$ (where $\left.x \in S_{\lambda}, y \in S_{\tau}\right)$,

$$
\begin{equation*}
(e, g)(f, t)=\left(e f^{\tilde{g}} 1_{\lambda \tau}, g * t\right) . \tag{2.5}
\end{equation*}
$$

Conversely, let Λ be a right regular band. Suppose that $G \equiv \sum\left\{G_{\lambda}: \lambda \in \Lambda\right\}$ is an orthodox right regular band Λ of groups G_{λ} and $E \equiv \sum\left\{E_{\lambda}: \lambda \in \Lambda\right\}$ is a right regular band Λ of left zero semigroups E_{λ}. Let 1_{λ} be a representative of E_{λ} for each $\lambda \in \Lambda$. For each $g \in G$, let \tilde{g} be a mapping of E into E such that the system $\{\tilde{g}: g \in G\}$ of all \tilde{g} satisfies the condition (2.4) above. Then, $S=\sum\left\{E_{\lambda} \times G_{\lambda}: \lambda \in \Lambda\right\}$ becomes an orthodox right regular band Λ of the left groups $E_{\lambda} \times G_{\lambda}$ under the multiplication defined as follows:

For $(e, g) \in E_{\lambda} \times G_{\lambda}$ and $(f, t) \in E_{\tau} \times G_{\tau},(e, g)(f, t)=\left(e f^{\tilde{g}} 1_{\lambda \tau}, g * t\right)$,
where $*$ is the multiplication in G.
Summarizing the results above, we obtain the following theorem:
Theorem 2. Let Λ be a right regular band. Let $G \equiv \sum\left\{G_{\lambda}: \lambda \in \Lambda\right\}$ be an orthodox right regular band Λ of groups G_{λ}, and $E \equiv \sum\left\{E_{\lambda}: \lambda \in \Lambda\right\}$ a right regular band Λ of left zero semigroups E_{λ}. Let 1_{λ} be a representative of E_{λ} for each $\lambda \in \Lambda$. For each $g \in G$, let \tilde{g} be a mapping of E into E such that the system $\{\tilde{g}: g \in G\}$ satisfies (2.4). Then, $S=\sum\left\{E_{\lambda} \times G_{\lambda}: \lambda \in \Lambda\right\}$ becomes an orthodox right regular band Λ of the left groups $E_{\lambda} \times G_{\lambda}$ under the multiplication defined as follows:

$$
\begin{equation*}
\text { For }(e, g) \in E_{\alpha} \times G_{\alpha} \text { and }(f, t) \in E_{\beta} \times G_{\beta},(e, g)(f, t)=\left(e f^{\tilde{g}} 1_{\alpha \beta}, g * t\right), \tag{2.6}
\end{equation*}
$$

where $*$ denotes the multiplication in G. Accordingly, S is an L-compatible orthodox semigroup. Conversely, every L-compatible orthodox semigroup can be constructed in this way.

Remark 1. A construction for orthodox right regular bands of groups can be obtained as a special case of Theorem 3 of Schein [2].
2. It has been proved by [7] that an orthodox semigroup S is both L - and R-compatible if and only if S is an orthodox regular band of groups. On the other hand, a construction for such semigroups can be obtained as a special case of Theorem 4 of Schein [2].

§3. L-and H-compatible orthodox semigroups

It has been shown by [6] that an orthodox semigroup S is both L - and H-compatible if and only if S is a band of groups and an orthodox right regular band of left
groups. Accordingly, S is L - and H-compatible if and only if S is an orthodox right semiregular band of groups.

In this section, we shall consider the construction of L - and H-compatible orthodox semigroups.

Let S be an L - and H-compatible orthodox semigroup. Then, there exist a right semiregular band Γ which is a right regular band Λ of left zero semigroups Γ_{λ} (that is, $\Gamma \equiv \sum\left\{\Gamma_{\lambda}: \lambda \in \Lambda\right\}$) and a left group S_{λ} for each $\lambda \in \Lambda$ such that
(1) S is an orthodox right regular band Λ of the left groups $S_{\lambda}: S \equiv \sum\left\{S_{\lambda}: \lambda \in \Lambda\right\}$,
(2) S_{λ} is a left zero semigroup Γ_{λ} of groups $G_{\lambda_{i}}: S_{\lambda} \equiv \sum\left\{G_{\lambda_{i}}: \lambda_{i} \in \Gamma_{\lambda}\right\}$ (hereafter, elements of Γ_{λ} are denoted by λ_{i}, λ_{j}, etc.), and
(3) for any $\lambda_{i} \in \Gamma_{\lambda}$ and $\tau_{j} \in \Gamma_{\tau}, G_{\lambda_{i}} G_{\tau_{j}} \subset G_{\lambda_{i} \tau_{j}}$ holds.

Denote the identity of $G_{\lambda_{i}}$ by $e_{\lambda_{i}}$.
Now, we introduce a quasiorder \leq in Λ as follows (see [2]): For $\alpha, \beta \in \Lambda, \beta \leq \alpha$ if and only if $\beta \alpha \beta=\beta$. Since Λ is a right regular band, in this case $\alpha \beta=\beta$ holds.

For any $\alpha_{i} \in \Gamma_{\alpha}, \beta_{j} \in \Gamma_{\beta}$ such that $\alpha \geq \beta$, define a mapping $f_{\alpha_{i}, \beta_{j}}: G_{\alpha_{i}} \rightarrow G_{\beta_{j}}$ by

$$
x f_{\alpha_{i}, \beta_{j}}=e_{\beta_{j}} x e_{\beta_{j}} .
$$

For $x, y \in G_{\alpha_{i}}$, we have $e_{\beta_{j}} x e_{\beta_{j}} y e_{\beta_{j}}=e_{\beta_{j}} x e_{\beta_{j}} e_{\alpha_{i}} y e_{\beta_{j}}=e_{\beta_{j}} x y e_{\beta_{j}}$ (since $e_{\beta_{j}} e_{\alpha_{i}}$ is the identity of $G_{\beta_{j} \alpha_{i}}\left(\ni e_{\beta_{j}} x\right)$). Hence, $f_{\alpha_{i}, \beta_{j}}$ is a homomorphism. Now, let us consider the system $\left\{f_{\alpha_{i}, \beta_{j}}: \alpha, \beta \in \Lambda, \alpha \geq \beta, \alpha_{i} \in \Gamma_{\alpha}, \beta_{j} \in \Gamma_{\beta}\right\}$. For $\alpha_{i} \in \Gamma_{\alpha}, \beta_{j} \in \Gamma_{\beta}$ and $\gamma_{k} \in \Gamma_{\gamma}$ such that $\alpha \geq \beta$ $\geq \gamma$, we can prove by simple calculation that $x f_{\alpha_{i}, \beta_{j}} f_{\beta_{j}, \gamma_{k}}=x f_{\alpha_{i}, \gamma_{k}}$ for all $x \in G_{\alpha_{i} .}$. Further, $x f_{\alpha_{i}, \alpha_{j}}=e_{\alpha_{j}} x e_{\alpha_{j}}=e_{\alpha_{j}} x$ for $\alpha_{i}, \alpha_{j} \in \Gamma_{\alpha}$ and $x \in G_{\alpha_{i}}$. Therefore, $f_{\alpha_{i, \alpha_{j}}}$ is the left multiplication by $e_{\alpha j}$.

From the results above, this system satisfies the following:
(3.1) (1) For any $\alpha \in \Lambda$ and for any $\alpha_{i}, \alpha_{j} \in \Gamma_{\alpha}, f_{\alpha_{i}, \alpha_{j}}=$ the left multiplication by $e_{\alpha_{j}}$,
(2) for $\alpha_{i} \in \Gamma_{\alpha}, \beta_{j} \in \Gamma_{\beta}$ and $\gamma_{k} \in \Gamma_{\gamma}$ such that $\alpha \geq \beta \geq \gamma$,

$$
f_{\alpha_{i}, \beta_{j}} f_{\beta_{j}, v_{k}}=f_{\alpha_{i}, \gamma_{k}} .
$$

Now, it is easy to see that the multiplication in S is given as follows by using this system:

For $x \in G_{\alpha_{i}}$ and $y \in G_{\beta_{j}}$,

$$
\begin{align*}
& x y=x e_{\alpha_{i}} e_{\beta_{j}} y=x e_{\alpha_{i} \beta_{j}} y=\left(e_{\alpha_{i} \beta_{j}} x e_{\alpha_{i} \beta_{j}}\right)\left(e_{\alpha_{i} \beta_{j}} y e_{\alpha_{i} \beta_{j}}\right) \tag{3.2}\\
& \\
& =\left(x f_{\alpha_{i}, \alpha_{i} \beta_{j}}\right)\left(y f_{\beta_{j}, \alpha_{i} \beta_{j}}\right)
\end{align*}
$$

Conversely, we have the following:
Lemma 3. Let Γ be a right semiregular band which is a right regular band
Λ of left zero semigroups $\Gamma_{\lambda}: \Gamma \equiv \sum\left\{\Gamma_{\lambda}: \lambda \in \Lambda\right\}$. For each $\lambda \in \Lambda$, let S_{λ} be a left zero semigroup Γ_{λ} of groups $G_{\lambda_{i}}$ (hence, S_{λ} is a left group): $S_{\lambda} \equiv \sum\left\{G_{\lambda_{i}}: \lambda_{i} \in \Gamma_{\lambda}\right\}$. Let $e_{\lambda_{i}}$ be the identity of $G_{\lambda_{i}}$ for $\lambda_{i} \in \Gamma_{\lambda}, \lambda \in \Lambda$. Now, let $F=\left\{f_{\alpha_{i}, \beta_{j}}: \alpha, \beta \in \Lambda, \alpha \geq \beta, \alpha_{i}\right.$ $\left.\in \Gamma_{\alpha}, \beta_{j} \in \Gamma_{\beta}\right\}$ be a system of homomorphisms $f_{\alpha_{i}, \beta_{j}}: G_{\alpha_{i}} \rightarrow G_{\beta_{j}}$ such that it satisfies (3.1) (such a system is called a direct system on $\left.\left\{G_{\lambda_{i}}: \Gamma_{\lambda}, \Gamma(\Lambda)\right\}\right)$. Then, $S=\Sigma\left\{S_{\lambda}\right.$: $\lambda \in \Lambda\}$ becomes an orthodox right regular band Λ of the left groups S_{λ} and is a right semiregular band Γ of the groups $G_{\lambda_{i}}$ under the multiplication * defined as follows:
(3.3) For $x \in G_{\alpha_{i}}$ and $y \in G_{\beta_{j}}$,

$$
x * y=\left(x f_{\alpha_{i}, \alpha_{i} \beta_{j}}\right)\left(y f_{\beta_{j}, \alpha_{i} \beta_{j}}\right) .
$$

That is, $S(*)$ is an L - and H-compatible orthodox semigroup.
Proof. First we shall show that $S(*)$ is a semigroup. For $x \in G_{\alpha_{i}}, y \in G_{\beta_{j}}$ and $z \in G_{\gamma_{k}}$,

$$
\begin{aligned}
(x * y) * z & =\left(\left(x f_{\alpha_{i}, \beta_{j} \gamma_{k}} y f_{\beta_{j}, \alpha_{i} \beta_{j}}\right) f_{\alpha_{i} \beta_{j}, \alpha_{i} \beta_{j} v_{k}}\right)\left(z f_{\gamma_{k}, \alpha_{i} \beta_{j k}}\right) \\
& =\left(x f_{\alpha_{i}, \alpha_{i} \beta_{j} v_{k}}\right)\left(y f_{\beta_{j}, \alpha_{i} ; \beta_{j} \gamma_{k}}\right)\left(z f_{\gamma_{k}, \alpha_{i} \beta_{j} \gamma_{k}}\right) .
\end{aligned}
$$

Similarly, we have

$$
x *(y * z)=\left(x f_{\alpha_{i}, \alpha_{i} \beta_{j} \gamma_{k}}\right)\left(y f_{\beta_{j}, \alpha_{i} \beta_{j} v_{k}}\right)\left(z f_{\gamma_{k}, \alpha_{i} \beta_{j} v_{k}}\right) .
$$

Hence, $S(*)$ is a semigroup. Next, for $x \in G_{\alpha_{i}}$ and $y \in G_{\alpha_{j}}$ it follows that

$$
\begin{aligned}
x * y & =\left(x f_{\alpha_{i}, \alpha_{i} \alpha_{j}}\right)\left(y f_{\alpha_{j}, \alpha_{i} \alpha_{j}}\right)=\left(x f_{\alpha_{i}, \alpha_{i}}\right)\left(y f_{\alpha_{j}, \alpha_{i}}\right)=e_{\alpha_{i}} x e_{\alpha_{i}} y \\
& \left.=x y \text { (in } S_{\alpha}\right) .
\end{aligned}
$$

Therefore, S_{α} is embedded in $S(*)$. Further, for any $x \in G_{\alpha_{i}}$ and $y \in G_{\beta_{j}}$

$$
x * y=\left(x f_{\alpha_{i}, \alpha_{i} \beta_{j}}\right)\left(y f_{\beta_{j}, \alpha_{i} \beta_{j}}\right) \subset G_{\alpha_{i} \beta_{j}} \subset S_{\alpha \beta} .
$$

Thus, $S(*)$ is a right regular band Λ of the left groups S_{λ} and is a right semiregular band Γ of the groups $G_{\alpha_{i} i}$. Especially, if we put $e_{\alpha_{i}}=x$ and $e_{\beta_{j}}=y$ in the equality above then we have $e_{\alpha_{i}} * e_{\beta_{j}}=e_{\alpha_{i} \beta_{j}} e_{\alpha_{i} \beta_{j}}=e_{\alpha_{i} \beta_{j}}$. Hence, the set $E(S(*))$ of idempotents of $S(*)$ is a band which is isomorphic to Γ. Therefore, $S(*)$ is an orthodox semigroup.

From the results above, we have the following theorem:
Theorem 4. Let Γ be a right semiregular band which is a right regular band Λ of left zero semigroups $\Gamma_{\lambda}: \Gamma \equiv \Sigma\left\{\Gamma_{\lambda}: \lambda \in \Lambda\right\}$. For each $\lambda \in \Lambda$, let S_{λ} be a left zero semigroup Γ_{λ} of groups $G_{\lambda_{i}}: S_{\lambda} \equiv \sum\left\{G_{\lambda_{i}}: \lambda_{i} \in \Gamma_{\lambda}\right\}$ (hence, S_{λ} is a left group). Let $e_{\lambda_{i}}$ be the identity of $G_{\lambda_{i}}$ for $\lambda_{i} \in \Gamma_{\lambda}, \lambda \in \Lambda$. Let $\left\{f_{\alpha_{i}, \beta_{j}}: \alpha, \beta \in \Lambda, \alpha \geq \beta, \alpha_{i} \in \Gamma_{\alpha}, \beta_{j} \in \Gamma_{\beta}\right\}$ be a direct system on $\left\{G_{\lambda_{i}}: \Gamma_{\lambda}, \Gamma(\Lambda)\right\}$. Then, $S=\Sigma\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ is an orthodox right
regular band Λ of the left groups S_{λ} and is a right semiregular band Γ of the groups $G_{\lambda_{i}}$ under the multiplication $*$ defined by (3.3). That is, $S(*)$ is an L - and H-compatible orthodox semigroup. Conversely, every L-and H-compatible orthodox semigroup can be constructed in this way.

Remark. The following result was established by [5]: Let Γ be a right semiregular band, and $\Gamma \sim \Sigma\left\{\Gamma_{\delta}: \delta \in \Delta\right\}$ the structure decomposition ${ }^{3)}$ of Γ. Let G be a semilattice Δ of groups $G_{\delta}: G \equiv \Sigma\left\{G_{\delta}: \delta \in \Delta\right\}$. Then, the spined product $\Gamma \bowtie \Delta G(\Delta)$ of Γ and G is an orthodox right semiregular band of groups, and accordingly $\Gamma \bowtie \Delta G(\Delta)$ is an L - and H-compatible orthodox semigroup. Further, every L - and H-compatible orthodox semigroup can be constructed in this way.

Theorem 4 above gives another construction for L - and H-compatible orthodox semigroups in the direction of the method given by Schein [2].

References

[1] Clifford, A. H.: The structure of orthodox unions of groups, Semigroup Forum 3 (1972), 283-337.
[2] Schein, B. M.: Bands of unipotent monoids, Semigroup Forum 6 (1973), 75-79.
[3] Warne, R. J.: On the structure of semigroups which are unions of groups, Semigroup Forum 5 (1973), 323-330.
[4] Yamada, M.: The structure of separative bands, Dissertation, University of Utah, 1962.
[5] -: Strictly inversive semigroups, Bull. of Shimane University 13 (1964), 128-138.
[6] -: Orthodox semigroups on which Green's relations are compatible, I; H-compatible orthodox semigroups, Surikaiseki Kenkyusho Kokyuroku 292 (1977), Kyoto University.
[7] -: H-compatible orthodox semigroups, to appear.

[^0]
[^0]: 3) Any band B can be uniquely expressed as a semilattice Δ of rectangular bands $B_{i}: B \equiv \sum\left\{B_{i}\right.$: $\delta \in \Delta\}$. In this case, this expression is called the structure decomposition of B, and denoted by $B \sim \Sigma\left\{B_{i}: \delta \in \Delta\right\}$.
