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Abstract. The Vdovichenko formula is a formula for counting Euler sub-
graphs of a labelled graph which is embedded into a plane. We interpret it
as a loop expansion formula. The nature of the loop expansion is explored in
detail.

1. Introduction

An Euler graph is a graph of which each vertex has even degree. If an Euler
graph P is a subgraph of a graph G we say that P is an Euler subgraph of G.

Let G be a graph embedded into a plane, and consider the generating function
for Euler subgraphs of the graph with a given number of edges (see (1) and (2)).

Vdovichenko [1] gave a nice formula for the square lattice graph G on a plane
which expresses the generating function in terms of a “transition matrix” using an
analogy with a random walk problem on graphs. In a recent paper the author [2]
gave a generalization which is applicable for any graph G embedded into a plane.
However, it seems that no rigorous proof of the original Vdovichenko formula
(and so, the generalized one by the author) has been appeared in the literatures.

This paper presents a preparatory consideration on the formula(s) (hope-
fully) toward a rigorous proof. We shall clarify the geometric meaning of the
Vdovichenko formula (in the generalized form, presented in [2]); the formula is
interpreted as a loop expansion where loops are drawn on the graph; see (10).
The nature of this loop expansion will be explored in Section 5.

2. Terminology on graphs

To begin with we give precise definitions of Euler subgraphs, a generating
function for them, and a plane graph.
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2.1. A graph and its Euler subgraphs. Abstractly, a graph (or digraph) is a
triple G = (V (G), E(G), φ) consisting of a finite set V (G) of vertices and a finite
set E(G) of edges, and a mapping φ : E(G) → V (G)×V (G), φ(e) = (I(e), T (e)).
The vertices I(e) and T (e) are called the initial vertex and the terminal vertex of
e, respectively, and they are called the endpoints of e. We allow closed edges (an
edge joining a vertex to itself) and parallel edges (more than one edge joining
two vertices, or one vertex in case of a closed edge).

Let G be a graph. By an Euler subgraph of G we shall mean a subgraph P
which satisfies V (P ) = V (G), E(P ) ⊂ E(G), and

degP (α) is even for every α ∈ V (P )

where the degree of a vertex α ∈ V (P ) with respect to P is defined by

degP (α) = #{e ∈ E(P ) | I(e) = α} + #{e ∈ E(P ) | T (e) = α}.

Note that Euler subgraphs are called polygons in the Ising model literatures.
Let Pp(G) denote the set of all Euler subgraphs with p edges and let P(G) =

∪∞
p=0Pp(G) (this set is finite). Let x = {xe | e ∈ E(G)} be a set of commutative

variables (indeterminates). Consider a polynomial in these variables defined by

S(x) =
∑

P∈P(G)

∏

e∈E(P )

xe.(1)

We shall call S(x) the generating function for Euler subgraphs, for if we substi-
tute xe = x for all e ∈ E(G) we obtain a generating function for Euler subgraphs
with a given number of edges:

[S(x)]all xe = x =

∞∑

p=0

Apx
p(2)

where Ap is the number of Euler subgraphs with p edges.

2.2. A plane graph. Usually a graph G is regarded as a topological space:
first we suppose that each vertex is homeomorphic to a point and each edge is
homeomorphic to the segment [0, 1] of the real line, and that the initial and the
terminal vertices correspond to 0 and 1 in the segment respectively; consider a
direct sum space (tα∈V (G){α}) t (te∈E(G){e}) and then identify the point I(e)
with α if I(e) = α and T (e) with α if T (e) = α, for each e ∈ E(G) and each
α ∈ V (G); in this way we obtain a topological space G. Note that an orientation
is naturally defined on each edge e through the homeomorphism e 7→ [0, 1].

An embedding of a graph G into the (Euclidean) plane is a one-to-one contin-
uous mapping f : G → R

2. Not all graphs are embeddable into the plane; a
graph which is embeddable into the plane is called planar (or of genus 0). An
embedding f is said to be smooth if a curve f(e) is smooth (except at endpoints)
in the plane for each edge e. By a plane graph we shall mean a topological space
f(G) where f : G → R

2 is a smooth embedding of a graph G.
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In what follows, since we shall fix a graph G and a smooth embedding f , we
shall identify f(G) with G; thus a plane graph will be sometimes called a graph
for short.

3. The Vdovichenko formula

The Vdovichenko formula for S(x), in the generalized sense in [2], is described
as follows.

Let G be a plane graph.
Let I = {e | e ∈ E(G)} t {−e | e ∈ E(G)} (disjoint union) be an index set

and define operations on I by

−m = −e, I(m) = I(e), T (m) = T (e), ε(m) = e if m = e for some e ∈ E(G);

−m = e, I(m) = T (e), T (m) = I(e), ε(m) = e if m = −e for some e ∈ E(G)

(m ∈ I). When e ∈ E(G) we shall identify e ∈ I with a “move” on the edge e in
the direction of the orientation assigned to it, and we shall identify −e ∈ I with
a “move” on the edge in the opposite direction. Also, sometimes m ∈ I will be
identified with a plane curve travelling from I(m) to T (m).

For a pair (m, m′) of members in I satisfying

m 6= −m′ and T (m′) = I(m)(3)

define

Wmm′ = xε(m′) · exp

(
iθmm′

2

)

, θmm′ = ϕmm′ +

∫

m′

κds(4)

where ϕmm′ is a counterclockwise angle (−π ≤ ϕmm′ ≤ π) a vector tangent to
edges turns at the vertex T (m′) when moving from m′ to m (When ϕmm′ ≡
π mod 2π, then ϕmm′ = π if m lies in the left side of m′, and ϕmm′ = −π
otherwise), κ the geodesic curvature of the directed edge m′ whose arc-length
parameter is s.

Let Wmm′ = 0 for pairs (m, m′) which do not satisfy (3) and write

W =
(

Wmm′

∣
∣
∣ m ∈ I, m′ ∈ I

)

.

The generating function S(x) can be expressed in terms of this 2#E(G) ×
2#E(G) matrix.

The Vdovichenko formula.

S(x) = exp

(

−
∞∑

p=1

1

2p
trace

(

W p
)
)

(5)

in the sense of formal power series in x.

As was mentioned before there exits no rigorous proof; but it has been tested
for many examples (see section 3.2 in [2] for example) and it is believed that the
formula holds in general.
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Since any square matrix can be transformed into an upper-triangle matrix by
some similarity transformation, we have

Corollary.

S(x) =
[

det
(

I − W
)]1/2

.(6)

4. A loop expansion formula

Let us rewrite the formula (5) and consider its meaning more closely. To do
this we introduce concepts of closed walks and loops on a graph.

A walk on G of length p (p ≥ 1) is an ordered p-tuples (m0, . . . , mp−1)
of members of I which satisfies T (mi) = I(mi+1) for i = 0, . . . , p − 2. A
walk (m0, . . . , mp−1) is closed if T (mp−1) = I(m0). For a closed walk w =
(m0, . . . , mp−1) let µ(w) denote its winding number (in the sense of differential
geometry; here we regard the closed walk as a piecewise smooth closed curve in
the plane. See eq.(9)). We remark that the number ‘µ(w) − 1 mod 2’ can be
interpreted as the number of intersection points of w modulo 2. Thus define the
sign of w, sgn (w), to be (−1)µ(w)−1.

Let Dp be the dihedral group of order 2p defined by the relations Sp = R2 = 1
and RSR−1 = S−1:

Dp =
〈

S, R
∣
∣ Sp = R2 = 1, RSR−1 = S−1

〉
.

Dp consists of 2p elements of the form SjRk, 0 ≤ j ≤ p − 1, k = 0, 1. Define an
action of Dp on closed walks of length p by

S((m0, . . . , mp−1)) = (m1, . . . , mp−1, m0),

R((m0, . . . , mp−1)) = (−mp−1, . . . ,−m0).

For a closed walk w of length p let

q(w) = min{j | 1 ≤ j ≤ p, Sj(w) = w}, d(w) = p/q(w);

the numbers q(w) and d(w) are said to be the period and the degeneracy of w
respectively. In other words, if Cp = 〈S | Sp = 1〉 denotes the cyclic group
of order p which is a subgroup of Dp and if Cp,w = {X ∈ Cp | X(w) = w}
denotes the stabilizer of w under the action of Cp, then d(w) = #Cp,w and
q(w) = #Cp/#Cp,w. Write

xw =

p
∏

i=1

xε(mi)
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(the set of variables x was introduced in (1)). We note that for any closed walk
w and any X ∈ Dp hold

µ(X(w)) ≡ µ(w) mod 2,

sgn (X(w)) = sgn (w),

d(X(w)) = d(w),

xX(w) = xw.(7)

A closed walk (m0, . . . , mp−1) is said to be allowed if mi+1 6= −mi, i =
0, . . . , p − 2, and m0 6= −mp−1 (In other words, an allowed closed walk is a
closed walk which contains no about-face turns). Let Wp(G) denote the set of
all allowed closed walks of length p. The group Dp acts on Wp(G). We note that
for w ∈ Wp(G) the stabilizer Dp,w = {X ∈ Dp | X(w) = w} coincides with Cp,w

[Proof. Let w = (m0, . . . , mp−1) ∈ Wp(G) and suppose that SjR(w) = w for
some j, 0 ≤ j ≤ p − 1; then we have −mp−j−1−k = mk, 0 ≤ k ≤ p − j − 1. If
p − j is odd we have −mi = mi for some i, a contradiction. Otherwise we have
−mi+1 = mi for some i; again impossible since w is assumed to be allowed. ];
hence d(w) = #Dp,w and 2q(w) = #Dp/#Dp,w.

An orbit of the action of Dp on Wp(G) is called a loop of length p. Let Lp(G)
denote the set of all loops of length p. Lp(G) = Dp\Wp(G). By virtue of (7) the
following definitions make sense for L ∈ Lp(G):

sgn (L) = sgn (w), d(L) = d(w), xL = xw

where w ∈ L. Now let us define the weight of L to be

ω(L) = sgn (L) ·
1

d(L)

The following lemma clarifies the meaning of trace W p in the Vdovichenko
formula.

Lemma 1.
∑

L∈Lp(G)

ω(L)xL = −
1

2p
trace

(

W p
)

.(8)

Write W (w) = Wmp−1,mp−2
· · · · · Wm1,m0

Wm0,mp−1
for w = (m0, . . . , mp−1) ∈

Wp(G). Then

trace
(

W p
)

=
∑

w∈Wp(G)

W (w).

For an allowed closed walk w = (m0, . . . , mp−1) we have an explicit expression
for the winding number

θmp−1,mp−2
+ · · · + θm1,m0

+ θm0,mp−1
= 2πµ(w)(9)

and hence

W (w) = exp (iπµ(w)) · xw = − sgn (w) · xw.
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Thus W (X(w)) = W (w) for w ∈ Wp(G) and X ∈ Dp (because of (7)), and
therefore W ([w]) = W (w) is well-defined (where [w] ∈ Lp(G)). Since the number
of distinct representatives (allowed closed walks) of a loop L = [w] ∈ Lp(G)
(w ∈ Wp(G)) is

#L =
#Dp

#Dp,w
=

2p

d(w)
=

2p

d(L)

we have
∑

w∈Wp(G)

W (w) =
∑

L∈Lp(G)

2p

d(L)
· W (L)

= −
∑

L∈Lp(G)

2p

d(L)
· sgn (L) · xL = −2p

∑

L∈Lp(G)

ω(L)xL.

Thus (8) is proved.

Thus we have the following exponential relationship for S(x) and a summation
over all loops.

Theorem 1. Let G be a plane graph and let S(x) be the generating function

(1) in #E(G) variables x = {xe | e ∈ E(G)}. The following is equivalent to the

Vdovichenko formula (5):

S(x) = exp





∞∑

p=1

∑

L∈Lp(G)

ω(L)xL



 .(10)

Proof. An immediate consequence of Lemma 1.

5. Some lemmas partly justifying the formula

Although the author has not completed a proof of the formula (10) or (5), there
are many pieces of “evidence” each of which would form a part of a complete
proof. We describe a few of them.

5.1. Products of loops. Let L(G) = ∪∞
p=1Lp(G) and refer to it as the set of all

loops. For loops L1, L2 ∈ L(G) we consider a formal commutative product L1L2

and define

sgn (L1L2) = sgn (L1) sgn (L2), xL1L2 = xL1xL2 .

As usual we will write L2 = LL, etc.
Let us introduce the “empty loop” ∅ which plays a role of unit element: i.e.,

∅L = L∅ = L, L ∈ L(G). Define sgn (∅) = 1 and x∅ = 1.
Let Z(G) denote the set which consists of all products of loops and the empty

loop:

Z(G) = {L1 · · ·Lk | k ≥ 0, Li ∈ L(G)(i = 1, . . . , k) }.
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Each element Z ∈ Z(G) is factorized as

Z = Lj1
1 · · ·Ljk

k

where the factors L1, . . . , Lk are distinct loops and j1 ≥ 1, . . . , jk ≥ 1. The
factorization is unique apart from the order of the factors.

When

Z = Lj1
1 · · ·Ljk

k , Z ′ = L
j′
1

1 · · ·L
j′
k

k ;

0 ≤ j ′1 ≤ j1, . . . , 0 ≤ j ′k ≤ jk, we shall say that Z ′ is a divisor of Z. If Z and
Z ′ have no common divisor but the empty loop ∅ they are said to be relatively
prime.

Lemma 2. Define U(Z), Z ∈ Z(G), by

exp




∑

L∈L(G)

ω(L)xL



 =
∑

Z∈Z(G)

U(Z)xZ .(11)

The coefficients U(Z) have the following properties:

(a) U(∅) = 1 and U(L) = ω(L) = sgn (L)/d(L) for L ∈ L(G), and in general

U(Lj1
1 · · ·Ljk

k ) =
1

j1! · · · jk!
ω(L1)

j1 · · ·ω(Lk)
jk

=
1

j1! · · · jk!

sgn (L1)
j1 · · · sgn (Lk)

jk

d(L1)j1 · · ·d(Lk)jk

where L1, . . . , Lk are distinct loops and j1, . . . , jk nonnegative integers.

(b) If Z and Z ′ in Z(G) are relatively prime then

U(ZZ ′) = U(Z)U(Z ′).

(c) Let L1, . . . , Lk be distinct loops and let j1 ≥ 1, . . . , jk ≥ 1. Then

|U(Lj1
1 · · ·Ljk

k )| = 1

if and only if j1 = · · · = jk = 1 and d(L1) = · · · = d(Lk) = 1.

Proof. The definition of U(Z) implies (a). (b) and (c) are corollaries of (a).

5.2. Sum of the coefficients corresponding to an Euler subgraph is

1. Let x = {xe | e ∈ E(G)}. Define a mapping x : Z(G) → {monomials} by
x(Z) = xZ . It is known that any Euler graph can be partitioned into loops. Thus,
for each Euler subgraph P ∈ P(G) there exists a product of loops Z ∈ Z(G)
such that

∏

e∈E(P ) xe = xZ . Let ZP denote the set of all such Z; namely, for each

P ∈ P(G) define

ZP =
{

Z ∈ Z(G)
∣
∣
∣

∏

e∈E(P )

xe = xZ
}

.

This is an easy lemma:
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Lemma 3. Let P ∈ P(G) be an Euler subgraph. Then,
∑

Z∈ZP
U(Z) = 1.

Proof. Let 1, . . . , k be the vertices of P whose degree degP ≥ 4. Write 2nj =
degP (j), 1 ≤ j ≤ k. At each vertex j there are 2nj incident edges; the number of
ways of joining two in pairs is (2nj − 1)!!, of which ((2nj − 1)!! + 1)/2 ways have
even transversal intersections (in a neighborhood of the vertex) and remaining
((2nj − 1)!!− 1)/2 ways have odd transversal intersections. Thus the number of
ways of partitioning the Euler subgraph P into loops is MP = (2n1 − 1)!!× · · ·×
(2nk − 1)!! [that is, #ZP =

∏k
j=1(2nj − 1)!!]; among those partitions (MP + 1)/2

ways correspond to products of loops having even intersections (i.e., sgn (Z) = 1),
and remaining (MP − 1)/2 ways to products of loops having odd intersections
(i.e., sgn (Z) = −1). Thus

∑

Z∈ZP
U(Z) = (MP + 1)/2 − (MP − 1)/2 = 1.

5.3. Cancellation of terms which do not correspond to Euler subgraphs.

This is the most nontrivial part. The author has not completed justification for
the title of this subsection. Only partial results are exhibited here.

For a loop L ∈ Lq(G) and a positive integer n, take an allowed closed walk
w = (m0, . . . , mq−1) ∈ Wq(G) such that [w] = L, and write

w∗n = (m0, . . . , mq−1, . . . . . . . . . , m0, . . . , mq−1
︸ ︷︷ ︸

pattern m0, . . . , mq−1 repeats n times

) ∈ Wnq(G),

and define a loop L∗n ∈ Lnq(G) to be L∗n = [w∗n]. Clearly L∗1 = L, and
xL∗n

= (xL)n. Each loop L has a representation L = L∗d
1 for some L1 ∈ L(G)

where d = d(L).
When d(L) ≥ 2 the loop L is said to be degenerate.

Lemma 4. Let L be a nondegenerate loop (d(L) = 1). Let k ≥ 1. Then

sgn (L∗k) = −(−sgn (L))k, d(L∗k) = k

and hence

U(L∗k) = −(−sgn (L))k 1

k
.

Proof. Take an allowed closed walk w such that [w] = L, and let µ = µ(w)
be its winding number; thus “the number of intersection points mod 2” of w is
ν = µ−1. The degenerate walk w∗k has the winding number µ(w∗k) = kµ. Thus
its “number of intersection points mod 2” is

µ(w∗k) − 1 = kµ − 1 = kν + k − 1 ≡

{
k − 1 mod 2 (if ν is even),
1 mod 2 (if ν is odd).

Since sgn (L) = (−1)µ(w∗k)−1 the equality for sign is proved.
The statements on d and U are trivial.

The following nice cancellation occurs.



ENUMERATION OF EULER SUBGRAPHS 9

Lemma 5. Let Z1 ∈ Z(G) and let L ∈ L(G). Suppose that L is nondegenerate

(d(L) = 1) and that L is not a divisor of Z1. Let n ≥ 2. Then
∑

λ`n

U(Z1L
λ1(L∗2)λ2 · · · (L∗n)λn) = 0.

Here “λ ` n” means that λ = (λ1, . . . , λn) is an n-tuple of nonnegative integers

such that
∑n

k=1 kλk = n (see Figure). The summation is taken over all such λ.

6
?

λ1

6?λ2

6
?

λk

6?λn

-� k

-� n

A Young diagram λ = (λ1, . . . , λn)

Proof. Because of Lemma 2 (b) it is sufficient to prove the statement for Z1 = ∅.
Let λ ` n and put Zλ =

∏n
k=1(L

∗k)λk . Using lemmas prepared above and
∑n

k=1 kλk = n we have

U(Zλ) = U
( n∏

k=1

(L∗k)λk

)

=

n∏

k=1

U((L∗k)λk)

=

n∏

k=1

1

λk!
sgn (L∗k)λk

1

d(L∗k)λk

=

n∏

k=1

1

λk!
(−1)λk (− sgn (L))kλk

1

kλk

= (−1)
�

λk (− sgn (L))
�

kλk

n∏

k=1

1

λk!kλk

= (− sgn (L))n (−1)
�

λk

n∏

k=1

1

λk!kλk

and hence
∑

λ`n

U(Zλ) = (− sgn (L))n
∑

λ`n

(−1)
�

λk

n∏

k=1

1

λk!kλk
.

Now recall a well-known fact that the number of elements of Sn, the symmetric
group of degree n, of type λ = (λ1, . . . , λn), i.e., having λk cycles of length k,
k = 1, 2, . . . , n, is

h(λ) =
n∏

k=1

n!

λk!kλk
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(Cauchy’s formula). The sign of a permutation of this type λ is
n∏

k=1

{(−1)k+1}λk = (−1)n(−1)
�

λk .

Putting all this together we have
∑

λ`n

U(Zλ) =
( sgn (L))n

n!

∑

λ`n

(−1)n(−1)
�

λk h(λ) =
( sgn (L))n

n!

∑

σ∈Sn

sgn σ.

This equals 0.

Thus, what remains to be justified in order to complete a proof of the loop
expansion formula (10) or the Vdovichenko formula (5) is the following claim.
Here, for L ∈ L(G) and n ≥ 2, the product Ln = L · · ·L (n times) is said to be
duplicate loops.

Claim. Let Z ′ be the set of all elements Z of Z(G) such that

Z has no duplicate loops nor degenerate loops in factors

and that

there exists at least one e ∈ E(G) such that the

degree of xZ in the variable xe is ≥ 2.

Then
∑

Z∈Z′ U(Z)xZ = 0.
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