タンクモデルを応用した洪水流出解析法

福島 晟·田中礼次郎

Akira FUKUSHIMA and ReijiroTANAKA

A Method of Flood Runoff Analysis by the Applied Series Tanks Model

1. まえがき

代表的な洪水流出解析法の一つである雨水流法は流域 の土地利用変化にも対応しうる定数分布型の流出モデル であり、かつモデル定数と流域地形量との関連について も定量的に吟味しうるという利点をもっている.しかし 洪水流出予測に利用しようとする場合,有効降雨の算定 法になお検討すべき問題点が残されているといえる.

一方,菅原の提案による直列4段タンクモデル法は決定すべきモデル定数が多く,その同定は試行錯誤的であったため最大の難点とされていたが,小林・丸山,永井・角屋らの数学的最適化手法を導入した研究により,その難点は解消されたといえる.したがって,菅原のタンクモデルの最適同定はそうした研究成果にもとづき,非常に効率的に実行でき,河川流域の流出特性とタンクモデル定数との関係についてもより厳密な議論が可能となった.しかしながら,菅原のタンクモデル定数を流域の地形・地質要素と関連づけて定量化を行うこと,ないし流域開発に伴う雨水流出形態の変化と関連づけて定量評価するには限界があり,また同一流域でも最適同定されるタンクモデル定数が出水規模により異なることが指摘されている.

本研究はこのような問題に対処するため検討を試みよ うとしたものである.まず,流域平均雨量をそのまま入 力情報として利用できる,いわゆる有効降雨を算定する 必要がない菅原のタンクモデルの基本構造を生かしつ つ,かつタンクモデル定数に雨水流モデルの定数を対応 させたモデルによる洪水流出解析法を新たに提示する. ついで2つの試験流域における水文観測資料にもとづ き,本解析法による流出モデルの最適同定について検討 した結果を述べる.

* 農業水利工学研究室

2. 菅原タンクモデルを応用した洪水流出解析 法

いわゆるタンクモデルは流域をいくつかのタンクにお きかえ,図1に示すように通常直列4段の貯留型モデル として表現される.永井・角屋の下狩川流域(1.32km²))におけるタンクモデルの解析結果では,第1段タンク からの流出が表面流出と洪水初期の中間流出,第2段は 低減部の中間流出,第3,4段は地下水流出に対応した 流出状況であるとしている.そこで,この解析結果にも とづき,菅原のタンクモデルの構造,モデル定数評価に 若干の工夫を試みた2つの流出モデルについてその概要 を示す.

2.1 貯留集中型タンクモデルとその基本式 菅原のタンクモデル法の問題点のうち、タンクモデル

図1 直列4段タンク モデル 図2 貯留集中型タンク モデル 定数と流域の地形・地質要素との 関連づけの 問題に 対 処する一手法として,タンクモデル定数に流域の地文学 的,水理学的特性を組み込んで評価されている雨水流モ デルの定数を対応させて流出量を評価する流出モデルを 考える.ここでは,図2に示すタンクの構造を考える. すなわち,第1段タンクからの流出を雨水流モデルにお ける斜面部の表面流出,および中間流出に対応づけ,表 面流出孔,中間流出孔の各流出孔からの単位時間 Δt 秒 当たりの流出高が式(1),(2)で表わされるものとする. また,第2~4段タンクからの流出高,各段タンクより 下層への浸透高は式(3)~(8) で 与えられるものとする と,各段タンクについての連続の式は,式(9) で表わさ れる.

i) 表面流出高 q_1 : $q_1=0$ $(h_1 \le z_1)$ $q_1 = \frac{\alpha_0 \sqrt{s}}{B a_{1N}} (h_1 - z_1)^m (h_1 > z_1)$ または $q_1 = \frac{\alpha_0 \left(\frac{h_1 - z_1}{a_{1k}}\right)^m}{B (h_1 > z_1)}$ (1) ii) 早い中間流出高 q_2 : $q_2 = \frac{\alpha_0 a_2}{B} (h_1 - z_2) (z_2 < h_1 \le z_1)$ $q_2 = \frac{\alpha_0 a_2}{B} (z_1 - z_2) (h_1 > z_1)$ iii) 遅い中間流出高 q_3 :

iv) 地下水流出高 q_4, q_5 : $q_4=0$ ($h_3 \le z_4$) $q_4 = \frac{\alpha_0 a_4}{B}$ ($h_3 - z_4$) ($h_3 > z_4$) $\end{pmatrix}$ (4)

$$q_5 = \frac{\alpha_0 a_5}{B} h_4 \qquad (h_4 \ge 0) \qquad \dots \dots \dots (5)$$

v) 浸透流出高
$$p_1, p_2, p_3$$
:
 $p_1=0$ $(h_1 \le z_2)$
 $p_1 = \frac{\alpha_0 b_1}{B} (h_1 - z_2) (z_2 < h_1 \le z_1)$
 $p_1 = \frac{\alpha_0 b_1}{B} (z_1 - z_2) (h_1 > z_1)$
 $p_2 = \frac{\alpha_0 b_2}{B} h_2 (h_2 \ge 0)$ (6)
 $p_3 = \frac{\alpha_0 b_3}{B} h_3 (h_3 \ge 0)$ (7)

vi) 連続の式:

$$\begin{array}{c}
dh_{1}=r-q_{1}-q_{2}-p_{1}\\
dh_{2}=p_{1}-q_{3}-p_{2}\\
dh_{3}=p_{2}-q_{4}-p_{3}\\
dh_{4}=p_{3}-q_{5}
\end{array}$$
.....(9)

ここに、 $h_1 \sim h_4$:各段タンク水深 (mm)、 $q_1 \sim q_5$:各 段タンク流出孔よりの Δt 秒当たりの流出高 (mm)、 p_1

図3 貯留分布型タンクモデル

表1 解析対象出水

日	時	総雨量 (mm)	ピーク流出量 (m ³ /s)
昭44.6	25~27	196	9.4
45.9	$22 \sim 24$	116	1.8
46.9	. 6~ 8	214	5.5
55.8.3	0~8.31	190	1.2
55.8.1	8~8.19	64	0.16
	日 昭44.6. 45.9 46.9 55.8.3 55.8.1	日 時 昭44. 6. 25~27 45. 9. 22~24 46. 9. 6~ 8 55.8.30~8.31 55.8.18~8.19	日 時 総雨量 (mm) 昭44.6.25~27 196 45.9.22~24 116 46.9.6~8 214 55.8.30~8.31 190 55.8.18~8.19 64

 $\sim p_{3}$:各段タンクより下層への Δt 秒当たりの浸透高 (mm), $z_{1}\sim z_{4}$:各段タンク底面からの各流出孔の高さ (mm), α_{0} :換算係数で $\Delta t \times 10^{-2}$, B:平均斜面長(m) s:平均斜面勾配, a_{1N} , a_{1k} :表面流 モデルの等価粗度 $N(m^{-\frac{1}{3}}\cdot s)$,斜面流定数 $k = \left(\frac{N}{\sqrt{s}}\right)^{0.6}(m^{-\frac{1}{3}}\cdot s^{\frac{3}{2}})$ に相当す る定数, m:定数(=5/3), a_{2} , a_{3} :中間流モデルの定 数 k_{IS}/Γ (k_{I} :表層の透水係数, Γ :表層の有効間隙 率)に相当する定数 (cm/s), a_{4} , a_{5} :帯水層の斜面 方向の透水係数,動水勾配に規定される定数 (cm/s), b_{1} , b_{2} , b_{3} :鉛直方向の浸透量を規定する定数 (cm/s), r:単位時間 Δt 秒当たりの流域平均雨量(mm).

なお流域末端における流出高 q は $q = \sum_{i=1}^{n} q_i$ で与えられる.

2.2 貯留分布型タンクモデルとその基本式

前述2.1の貯留集中型タンクモデルを拡張し,流域 内の土地利用形態に応じた流出解析が可能な貯留分布 型タンクモデルを考える.流出モデルならびに流出解 析手順について概述すると以下のようになる.

i)表面流モデルによる流出解析と同様に流域をい くつかのブロックに分割し、各ブロックが長方形状の 斜面域とそれに付随する河道部から構成される流域モ デルを作成する.

ii) 斜面部における 雨水流出の基本式は前述 2.1の 貯留集中型タンクモデルと同形式で表現されるものと する.すなわち,図3に示すように各ブロック斜面域 からの表面流出,早い中間流出,遅い中間流出,地下 流出が前述の図2に示す構造のタンク側孔よりの流出 で表わされるものとし,河道部への横流入量を与える ものとする.各段タンクからの流出および浸透をこの 場合,斜面域単位幅当たりの流出量 $q(m^2/s)$,浸透 量 $p(m^2/s)$ で表わすため式 (1)~(8)中の α_0/B は α_1 =10⁻⁵ で置きかえられる.

iii)単位時間 ⊿t 秒当たりの各段タンクの水深変化 量は次式で与えられる.

$$dh_{1} = r - \frac{\alpha_{2}}{iB_{L,R}} (iq_{1} + iq_{2} + ip_{1})$$

$$dh_{2} = \frac{\alpha_{2}}{iB_{L,R}} (ip_{1} - iq_{3} - ip_{2})$$

$$dh_{3} = \frac{\alpha_{2}}{iB_{L,R}} (ip_{2} - iq_{4} - ip_{3})$$

$$dh_{4} = \frac{\alpha_{2}}{iB_{L,R}} (ip_{3} - iq_{5})$$
(10)

ここに $dh_1 \sim dh_4$: 各段タンクの水深変化量 (mm), $iB_{L,R}: i$ 番目ブロック左右岸の 斜面長(m), α_2 : 換算 係数で $\Delta t \times 10^3$, $iq_1 \sim iq_5: i$ 番目ブロックの左右岸斜面 域の各段タンクからの単位幅当たり流出量 (m²/s), $ip_1 \sim ip_3$: i 番目ブロックにおける各段タンクより下層への 浸透量(m²/s)

iv) 各ブロック左右岸斜面域からの流出量qL,R=

 $\left(\sum_{j=1}^{S} {}_{iq_{j}}\right)_{L,R}$ を算定した後,河道部の流出計算には表面流モデルの河道流に関する基礎式をそのまま適用する.

v) 最上流ブロックより上述の流出計算を順次行い, 流域末端における流出量の時間的変化を求める.

2.3 流出モデルの最適同定

前述2.1, 2.2に示した流出モデルの最適同定には,永 井・角屋の研究により開発された数学的最適化手法の一 種である基準化パウエル法を 適用 する ことにする.な お,計算手順,モデル定数の最適値探索に際しての評価 関数,ならびに計算効率を左右する変数の順序づけと基 準化は角屋・永井の解説によるものとする.すなわち解 析に用いた評価関数,変数の順序づけは次のとおりであ る.

(1) 評価関数

最適同定を行うための評価基準として次式に示す X² 基準を採用する.

ここに $M: データ数, q_{ci}: 計算流出高, q_{0i}: 観測流$ 出高.

また,次式で表わされる相対基準値も計算し,併示す ることにする.

(2) 変数の順序づけと基準化

各モデル定数を最初に仮定する初期値で基準化された ものを変数とし,かつ変数の順序はつぎの方式を用い る.

$$x_{1} = \frac{a_{1N}}{a_{1N_{0}}}, x_{2} = \frac{a_{2}}{a_{20}}, x_{3} = \frac{b_{1}}{b_{10}}, x_{4} = \frac{a_{3}}{a_{30}}$$

$$x_{5} = \frac{b_{2}}{b_{20}}, x_{6} = \frac{a_{4}}{a_{40}}, x_{7} = \frac{b_{3}}{b_{30}}, x_{8} = \frac{a_{5}}{a_{50}}$$

$$x_{9} = \frac{z_{1}}{z_{10}}, x_{10} = \frac{z_{2}}{z_{20}}, x_{11} = \frac{z_{3}}{z_{30}}, x_{12} = \frac{z_{4}}{z_{40}}$$

$$x_{13} = \frac{h_{4}}{h_{40}}, x_{14} = \frac{h_{3}}{h_{30}}, x_{16} = \frac{h_{2}}{h_{20}}, x_{16} = \frac{h_{1}}{h_{10}}$$

$$(13)$$

ここに、h は計算開始時の初期水深である。また添 字0は計算開始時に仮定する初期値である。なお、第1 段目タンクのモデル定数 a_{1k} を用いて解析する場合、 $x_1 = a_{1k}/a_{1k0}$ とする。

3. 解析事例とその検討

3.1 研究対象流域と解析対象出水

6) 3) ここでは下狩川流域及び内田流域を研究対象流域とす る.下狩川流域は流域面積 1.32km² で,上流域%は古 生層で雑木林,下流域%には一部農地に利用されている 沖積層を含むが,ほとんど洪積層(大阪層群)で竹林が 多い.流域の地表構成は山林93%,水田5%,道路他2 %となっている.一方,内田流域は流域面積 0.107km² で流域のほとんどが都野津層相当の洪積層でおおわれ,

図9 各流出成分ごとの流出量ハイドログラフ (Flood C) 土性は強粘質土壌が主体をなしている。上 流域%は牧草地として開発されており,残 りの下流域は赤松林を含む自然丘陵地となっている。

両流域における観測資料の中から,降雨 出水形態の異なる5出水を選び解析対象と する.表1にこれら出水時の総雨量,ピー ク流出量を示す.

3.2 下狩川流域における解析事例とその検討

洪水流の河道伝播効果を無視した形の貯 留集中型タンクモデルにより流出解析を行 った一例を図4に示す. 同図は Flood A に対し基準化パウエル法を適用して評価さ れる最適モデル定数を用いた例で, 同図中 に最適定数の値が併記してある. 同図より, 観測流出量ハイドログラフの再現性はきわ めて良好であることが指摘される.

図5,6は Flood A で定めた最適定数 を用い,Flood B,Flood C のそれぞれの 出水に対して適応性を吟味したものである. 図4に示す Flood A は $Q_p=7m^3/s/km^2$ 程度の典型的な一山型大出水であるのに対 し,Flood B $kQ_p=1m^3/s/km^2$ 程度の 小出水であり,Flood C $kQ_p=4m^3/s/km^2$ 程度の 複峰型中出水である.図5, 6にみられるように Flood A のような大 出水に対し定められた最適定数をそのまま 小,中出水に適用してもかなりの再現性が 得られている.ただし,モデル定数のうち, 初期水深 $h_1 \sim h_4$ は Flood B,C それぞれ に対し最適同定による評価値で,図中に併 記してある.

表面流モデルによる流出解析結果では, Flood A のような大出水に対して定めた 最適等価粗度の値をそのまま Flood B, C のような小,中出水に適用した場合,特に ピーク部の再現性が低下し,再現誤差が大 きくなる傾向にあることが指摘されている ことを勘案すると,貯留集中型タンクモデ ルによる解析結果は出水規模によりモデル 定数を変更する必要性がないことを意味し ているといえる.

図7,8,9はそれぞれ図4,5,6に 示すモデル定数を用いて算定される表面流

表2	流域モデルの基準次数と最適モデル定数	$(\Delta t = 1800s)$
----	--------------------	----------------------

	$U_* = 1$	U*=2	U _* =3	$U_* = 4$	U*=5	U _* =6
a_{1N}	17.5	10.7	4.92	2.57	1.70	1.21
a_2	0.090	0.133	0.235	0.438	0.557	0.721
a_3	0.077	0.118	0.227	0.374	0.510	0.671
a_4	0.036	0.057	0.131	0.232	0.328	0.461
a_5	0.005	0.007	0.017	0.040	0.060	0.069
b_1	0.028	0.040	0.065	0.143	0.198	0.241
b_2	0.028	0.040	0.065	0.143	0.198	0.241
b_3	0.028	0.040	0.065	0.143	0.198	0.241
z_1	57.0	58.0	59.0	57.0	57.0	58.0
z_2	26.0	26.0	24.0	26.0	24.0	24.0
z_3	29.0	29.0	29.0	29.0	29.0	29.0
\boldsymbol{z}_4	67.0	68.0	61.0	40.0	35.0	35.0
h_1	11.0	12.0	13.0	11.0	12.0	13.0
h_2	0.0	0.0	0.0	0.0	0.0	0.0
h_3	122.0	122.0	106.0	81.0	73.0	70.0
h_4	89.0	89.0	58.0	60.0	50.0	59.0
J_{XS}	0.013	0.013	0.012	0.013	0.013	0.013
$\overline{J_{RE}(\%)}$	4.9	4.9	5.0	5.1	5.0	5.1

表3 流域モデルの基準次数と最適モデル定数 (At=1800s)

	$U_* = 1$	$U_* = 2$	U*=3	$U_* = 4$	U*=5	U _* =6
a _{1k}	7.35	5.71	3.85	2.86	2.41	2.04
a2	0.091	0.133	0.252	0.443	0.563	0.728
a_8	0.077	0.118	0.227	0.374	0.510	0.671
a,	0.036	0.056	0.148	0.200	0.335	0.451
a_5	0.005	0.007	0.020	0.035	0.061	0.068
b_1	0.028	0.040	0.064	0.143	0.198	0.244
b_2	0.028	0.040	0.064	0.143	0.198	0.244
b_3	0.028	0.040	0.064	0.138	0.198	0.244
z_1	57.0	58.0	59.0	57.0	57.0	57.0
z_2	26.0	26.0	26.0	26.0	24.0	24.0
z_3	29.0	29.0	29.0	29.0	29.0	29.0
z_4	67.0	68.0	54.0	55.0	35.0	36.0
h_1	11.0	12.0	12.0	11.0	12.0	12.0
h_2	0.0	0.0	0.0	0.0	0.0	0.0
h_3	122.0	122.0	94.0	103.0	72.0	72.0
h_4	89.0	90.0	59.0	60.0	50.0	60.0
J_{XS}	0.013	0.013	0.013	0.013	0.013	0.013
$J_{RE}(\%)$	4.9	4.9	5.2	4.9	5.0	5.0

出,中間流出,地下水流出の各流出成分ごとの流出量ハ イドログラフを示したものである.これらの図より特に 表面流出,早い中間流出の流況変化が顕著に把握でき る.表面流モデルによる解析と比較して,ピーク部の再 現性はやや劣るが表面流モデル,中間流モデルなどの雨 水流モデルでは精度よい直接流出量の分離ないし有効雨 量の推定が問題になるだけに,タンクモデルの基本構造 を生かして有効雨量を算定する必要がない本流出モデル の有用性が指摘できる.

6) 表2,3は雨水流モデルによる解析で用いた次数別流 域モデルについて Flood A

の 最適 モデル 定数 を算定 した結果を示したものであ る.同表に評価基準値 J_{RB} (%) も併 記してある.いずれの流域 モデルによる解析結果も相 対誤差が5%程度と良好な 再現性が得られていること を示している.

これらの解析結果より各 モデル定数と流域モデル平 均斜面長との間に次のよう な関係式が得られる.

表4 流域モデルの基準次数と最適モデル定数との関係

U_*	B_c	В	Nopt	a_{1N}	kopt	a_{1k}
1 2 3 4 5 6	33 50 95 155 217 273	$\begin{array}{r} 63\\ 96\\ 185\\ 304\\ 415\\ 546\end{array}$	$13.4 \\ 8.0 \\ 4.0 \\ 2.6 \\ 1.9 \\ 1.4$	$17.5 \\ 10.7 \\ 4.9 \\ 2.6 \\ 1.7 \\ 1.2$	$6.4 \\ 5.0 \\ 3.4 \\ 2.8 \\ 2.6 \\ 2.3$	$7.4 \\ 5.7 \\ 3.9 \\ 2.9 \\ 2.4 \\ 2.0$

 U_* :流域モデルの基準次数, B_c :代表斜面長(m) B:平均斜面長(m), N_{opt} :最適等価粗度 k_{opt} :最適斜面定数, a_{1N} , a_{1k} :タンクモデル定数

図11 内田流域 Flood D の解析例 (*△t*=600s, *B*=187m)

また z₁-z₂÷33mm, z₂÷24mm と評価されている. 表4は表面流モデルを適用して得られる最適等価粗度 Nopt および最適斜面流定数 kopt とそれらに対応する 貯留集中型タンクモデル定数 a₁N, a_{1k} を比較したもの である.流域モデルの基準次数が小さくなるにつれて, a₁N, a_{1k} の値はそれぞれ Nopt, kopt に比較して大きな 値になる傾向を示しているが,これは基準次数が小さい 流域モデルほど河道効果を組み込んだ流域モデルである のに対し,貯留集中型タンクモデルでは洪水流の河道伝 播時間を全く考慮していないことに起因するものといえ る.

一方, 貯留分布型タンクモデルを適用すると, たとえ ば $U_*=6$ の流域モデルについては図10に示す最適モデ ル定数が得られた. 貯留集中型タンクモデルによる U_* =6 の流域モデルによる解析結果と比較し, a_{1k} 以外の モデル定数はほとんど変化していない.

a_{1k} も2.04から1.95と約4.4% 貯留分 布型タンクモデ ルによる解析結果が小さくなっているのみである.すな わち,単一ブロックとした貯留分布型タンクモデルによ る解析では貯留集中型タンクモデルによるものと大差な いモデル定数が得られ,表面流出を規定するモデル定数 a_{1N} ないし a_{1k} のみが僅かに小さく評価されることに なる.なお,図10に示すモデル定数を用いた流出解析に よる相対誤差は4.7%であった.

3.3 内田流域における解析事例とその検討

内田流域の Flood D に貯留集中型タンクモデルを適 用して得られる計算流出量ハイドログラフならびに最適 モデル定数を図11に示す. Flood D は $Q_p=11.6m^3/s/km^2$ の大出水であるが,同図に示すように観測流出量 ハイドログラフの再現性はきわめて良好な結果となって おり,相対誤差は7.3%である.

ついで Flood D で求めたモデル定数のうち,初期水 深以外を固定し,小出水の Flood E に適用した結果を 図12に示す.この場合の相対誤差は29.7%であり,再現 性は必ずしも良好とはいえない.しかし同図に・印で示 す計算値は菅原の直列4段タンクモデルを用い,Flood D で最適同定した値をやはり,初期水深以外を固定し, Flood E に適用したものである.この場合の相対誤差 は62.9%であるから,菅原のタンクモデルによる解析結 果と比較し,貯留集中型タンクモデルによる解析の方が 良好な結果が得られることを示している.これらの解析 結果より,基準化パウエル法で算定される菅原のタンク モデル定数の最適値は同一流域でも出水規模により変化 するという問題点が改良されたといえる.

4. あとがき

永井・角屋の解析結果にもとづき,菅原のタンクモデ ルの基本構造を生かしつつ,かつタンクモデル定数に雨 水流モデルの定数を対応させた貯留集中型タンクモデル および貯留分布型タンクモデルの2種の流出モデルによ る洪水流出解析法を提示した。ついで下狩川流域,内田 流域を対象に本解析法のうち主に貯留集中型タンクモデ ルの適応性について検討した。

その結果,洪水流の河道伝播効果を無視した形の貯留 集中型タンクモデルの適応性が確認され,かつ大出水に 対して定めた最適定数のうち初期水深以外の定数をその まま他の中小出水に適用しても,十分良好な再現性が得 られることが明らかになった。このことは,前年度の報 3) 告で指摘した,同一流域でも出水規模により,基準化パ ウエル法で算定される菅原のタンクモデル定数の最適値 は変化するという問題点が本解析法の適用により大幅に 改良されることを意味している。

また提案した流出モデルの定数に流域モデルの平均斜 面長を組み込んだことにより,モデル定数の流域間の比 較検討が可能となったが,詳細については今後の課題と したい.

さらに、本流出モデルに蒸発散量を加味した項を導入 すれば、換算係数 α₀ あるいは α₂ の値を洪水時と低水 時とで適宜変えるのみで、長期流出解析も可能となる。 したがって、本解析法の適用により、農地造成などに伴 う流域の部分的開発による流出形態の変化特性もより厳 密に議論しうるものと考える。

ここで研究対象流域とした下狩川流域の水文資料は京 都大学防災研究所角屋睦教授より提供いただき,また内 田流域の水文資料収集については農林水産省中国四国農 政局益田開拓建設事業所の関係各位に多大の御協力,御 世話になった.記して深く謝意を表する.

なお,本報告は昭和58年度文部省科学研究費による研 究成果の一部であること,およびここに示した計算には 島根大学電子計算センター FACOM 140-F を利用した ことを付記する.

参考文献

 小林慎太郎・丸山利輔:農土論文集 65:42-47, 1976.

2. 永井明博·角屋睦:京大防災研年報,23(B-2)

:239-247, 1980.

- 福島晟・田中礼次郎:島根大農研報,16:98-105, 1982.
- 5. 角屋睦・永井明博:農土学会誌,48(12):51-59, 1980.
- 6. 角屋睦・福島晟・佐合純造:京大防災研年報,21 (B-2):219-233,1978.
- 永井明博・角屋睦:京大防災研年報,21(B-2)
 : 235-249, 1978.

Summary

This paper describes a method of flood runoff analysis by the applied series tanks model and the applicability of runoff models using optimum identification of their model parameter.

The parameter identification of the series tanks model by M. Sugawara as the lumped parameter model became possible through development of mathematical optimization techniques given by the study of S. Kobayashi and T. Maruyama, A. Nagai and M. Kadoya. But, there is a limit in forecasting change of the series tank model parameter accompanying the development of a river basin. While, the rainwater flow method is a distributed parameter model that is characterized by the disposal point to discussion of the hydrological effects by the development of a river basin. But, an analysis by the rainwater flow method involves some problems unsolved in the estimation method of effective rainfall for forecasting of flood runoff.

Therefore, the two methods of flood runoff analysis are proposed by using the parameters of the applied series tanks model having one to one correspondence to the parameter of the rainwater flow model. One of the models is the applied series tanks model of a lumped storage type and the other is ones of a distributed storage type. Next, the applicability of the two runoff models is examined to the observed hydrologic data in the Shimokari basin of 1.32 km^2 and in the Uchida basin of 0.107 km^2 by searching their optimum model parameters. The Standardized Powell method is used to the optimum identification of their model parameters.

As the result, it is pointed out that the reproducibility of observed hydrograph is good for several floods and the usefullness of the proposal models is verified. Also, it is found that the expression for their model parameters is related to the mean slope length of a basin model.

- 99 ---